Archive for the ‘Cryptography’ Category

UPEK Fingerprint Readers: a Huge Security Hole

Tuesday, August 28th, 2012

Most laptops today ship with a fingerprint reader. Most likely, you have a laptop with one. Until very recently, most major manufacturers such as Acer, ASUS, Dell, Gateway, Lenovo, MSI, NEC, Samsung, SONY, Toshiba, and many others were using fingerprint readers manufactured by a single company: UPEK.

Preface

ElcomSoft discovered a major flaw with UPEK Protector Suite, which was the software shipped with the majority of laptops equipped with UPEK fingerprint readers until the company was acquired by Authentec and switched to different software. Even today, when UPEK is acquired by Authentec which now uses TrueSuite® software, many (or most) existing laptop users will simply stay with the old flawed software, not feeling the need to upgrade.

Does Fingerprinting the User Lead to Tighter Security?

Laptops normally come loaded with pre-installed software. Among other things manufacturers install on your brand-new laptop is software communicating with UPEK readers: UPEK Protector Suite. The suite manages fingerprint reading hardware, offering users the convenience of substituting the typing of passwords with a single swipe of a finger. Ultimately, UPEK Protector Suite caches your passwords, offering near-instant login to Web sites and Windows itself.

Logging into Windows by swiping a finger instead of clicking and typing a (probably long and complex) password sounds tempting. And, it works. A simple swipe of your finger, and you’re in. Wonderful; but what about security?

Here’s what UPEK says on its Web site about the Windows login: “Protector Suite QL allows for secure access to Windows by swiping your finger instead of typing a password.” Notice the “secure” part? Well, we found out UPEK makes Windows login anything but secure. In fact, the UPEK’s implementation is nothing but a big, glowing security hole compromising (and effectively destroying) the entire security model of Windows accounts.

The Issue with UPEK Protector Suite

After analyzing a number of laptops equipped with UPEK fingerprint readers and running UPEK Protector Suite, we found that your Windows account passwords are stored in Windows registry almost in plain text, barely scrambled but not encrypted. Having physical access to a laptop running UPEK Protector Suite, we could extract passwords to all user accounts with fingerprint-enabled logon. Putting things into perspective: Windows itself never stores account passwords unless you enable “automatic login”, which is discouraged by Microsoft. If you use the Windows auto-logon feature, you’ll see a message saying “Using automatic logon can pose a security risk because anyone that has access to your computer will have access to your programs and personal files.” Simply said, no corporate user will ever use this “automatic logon” feature, which is often banned by corporate security policies.

However, fingerprint logon is rarely, if ever, barred. The common perception is that biometric logon is just as, or maybe more secure than password-based one. While biometric logon could be implemented that way, UPEK apparently failed. Instead of using a proper technique, they preferred the easy route: UPEK Protector Suite simply stores the original password to Windows account, making it possible for an intruder to obtain one.

Storing Windows account passwords in plain text is bad practice. It defeats the entire purpose of enhanced security. In fact, with current implementation, we cannot speak of any security as the entire PC becomes extremely easy to exploit to anyone aware of this vulnerability. This time around, UPEK made it completely wrong, introducing a paper link to a stainless steel chain.

If Your Windows Logon Password Is Compromised

What happens if someone gets to know your Windows account password? First, they obviously gain access to all your files and documents. Of course, if they had your laptop and its hard drive at their disposal, they could to that anyway – with one exception: they would not be able to read EFS-encrypted files (those that have the “Encrypt contents to secure data” checkbox ticked in the file properties – Attributes – Advanced). EFS encryption is extremely strong and impossible to break without knowing the original Windows account password.

And here comes UPEK Protector Suite. Conveniently storing your plain-text account password, the suite gives the intruder the ability to access your used-to-be-protected EFS encrypted files. Bummer.

The Scope of the Issue

The scope of this issue is extremely broad. It is not limited to a certain laptop model or manufacturer. All laptops equipped with UPEK fingerprint readers and running UPEK Protector Suite are susceptible. If you ever registered your fingerprints with UPEK Protector Suite for accelerated Windows logon and typed your account password there, you are at risk.

Course of Action

If you care about security of your Windows account, launch UPEK Protector Suite and disable the Windows logon feature. That should clear the stored password for your account. Note that you should clear all stored account passwords to protect all user accounts.

What We Did

ElcomSoft will not disclose full detail in the interests of public responsibility. We notified former UPEK about the issue (but sure enough they know about it). We also prepared a demo application, which displays partial login credentials of users who enabled fingerprint login. We won’t give it away to general public; only a limited number of hi-tech journalists will receive this software.

New Hardware Key for iPad 3 Passcode Verification or Is It Just Masking?

Friday, June 8th, 2012

Few days ago we have updated our iOS Forensic Toolkit to version 1.15 which includes some bugfixes and improvements and, most notably, supports passcode recovery on the new iPad (also known as iPad 3). There are no significant changes from the practical point of view (i.e. the process of passcode recovery is still exactly the same), but there is something new under the hood. So if you’re interested in iOS security and how stuff works, please read on.

(more…)

Explaining that new iCloud feature

Tuesday, May 29th, 2012

It’s been almost two weeks since we have released updated version of Elcomsoft Phone Password Breaker that is capable of downloading backups from the iCloud and we have seen very diverse feedback ever since. Reading through some articles or forum threads it became quite evident that many just do not understand what we have actually done and what are the implications. So I am taking another try to clarify things.

(more…)

Mobile password keepers don’t keep the word

Friday, March 16th, 2012

We’ve analyzed 17 popular password management apps available for Apple iOS and BlackBerry platforms, including free and commercially available tools, and discovered that no single password keeper app provides a claimed level of protection. None of the password keepers except one are utilizing iOS or BlackBerry existing security model, relying on their own implementation of data encryption. ElcomSoft research shows that those implementations fail to provide an adequate level of protection, allowing an attacker to recover encrypted information in less than a day if user-selectable Master Password is 10 to 14 digits long.

The Research

Both platforms being analyzed, BlackBerry and Apple iOS, feature comprehensive data security mechanisms built-in. Exact level of security varies depending on which version of Apple iOS is used or how BlackBerry users treat memory card encryption. However, in general, the level of protection provided by each respective platform is adequate if users follow general precautions.

The same cannot be said about most password management apps ElcomSoft analyzed. Only one password management app for the iOS platform, DataVault Password Manager, stores passwords in secure iOS-encrypted keychain. This level of protection is good enough by itself; however, that app provides little extra protection above iOS default levels. Skipping the complex math (which is available in the original whitepaper), information stored in 10 out of 17 password keepers can be recovered in a day – guaranteed if user-selectable master password is 10 to 14 digits long, depending on application. What about the other seven keepers? Passwords stored in them can be recovered instantly because passwords are either stored unencrypted, are encrypted with a fixed password, or are simply misusing cryptography.

Interestingly, BlackBerry Password Keeper and Wallet 1.0 and 1.2 offer very little protection on top of BlackBerry device password. Once the device password is known, master password(s) for Wallet and/or Password Keeper can be recovered with relative ease.

In the research we used both Elcomsoft Phone Password Breaker and Elcomsoft iOS Forensic Toolkit.

Recommendations

Many password management apps offered on the market do not provide adequate level of security. ElcomSoft strongly encourages users not to rely on their advertised security, but rather use iOS or BlackBerry built-in security features.

In order to keep their data safe, Apple users should set up a passcode and a really complex backup password. The unlocked device should not be plugged to non-trusted computers to prevent creation of pairing. Unencrypted backups should not be created.

BlackBerry users should set up a device password and make sure media card encryption is off or set to “Encrypt using Device Key” or “Encrypt using Device Key and Device Password” in order to prevent attackers from recovering device password based on what’s stored on the media card. Unencrypted device backups should not be created.

The full whitepaper is available at http://www.elcomsoft.com/WP/BH-EU-2012-WP.pdf

Breaking Wi-Fi Passwords: Exploiting the Human Factor

Thursday, March 8th, 2012

Attacking Wi-Fi passwords is near hopeless if a wireless hotspot is properly secured. Today’s wireless security algorithms such as WPA are using cryptographically sound encryption with long passwords. The standard enforces the use of passwords that are at least 8 characters long. Encryption used to protect wireless communications is tough and very slow to break. Brute-forcing WPA/WPA2 PSK passwords remains a hopeless enterprise even if a horde of GPU’s is employed. Which is, in general, good for security – but may as well inspire a false sense of security if a weak, easy to guess password is selected.

Elcomsoft Wireless Security Auditor is one tool to test how strong the company’s Wi-Fi passwords are. After checking the obvious vulnerabilities such as open wireless access points and the use of obsolete WEP encryption, system administrators  will use Wireless Security Auditor that tries to ‘guess’ passwords protecting the company’s wireless traffic. In previous versions, the guessing was limited to certain dictionary attacks with permutations. The new version gets smarter, employing most of the same guessing techniques that are likely to be used by an intruder.

Humans are the weakest link in wireless security. Selecting a weak, easy to guess password easily overcomes all the benefits provided by extensive security measures implemented in WPA/WPA2 protection. In many companies, employees are likely to choose simple, easy to remember passwords, thus compromising their entire corporate network.

The New Attacks
The new attacks help Elcomsoft Wireless Security Auditor recover weak passwords, revealing existing weaknesses and vulnerabilities in companies’ wireless network infrastructure.

Word Attack
If it’s known that a password consists of a certain word, the Word attack will attempt to recover that password by trying heavily modified versions of that word. This attack only has two options: you can set the source word and you can disable all permutations except changing the letter case. In addition, we can apply permutations to the source word first, forming a small dictionary; then perform a full dictionary attack, applying various permutations to all words from the newly formed list.

Mask Attack
Certain passwords or password ranges may be known. The mask attack allows creating a flexible mask, brute-forcing the resulting limited combination of passwords very quickly. The masks can be very flexible. One can specify placeholders for static characters, letter case, as well as full or limited range of special characters, digits or letters. Think of the Mask attack as an easy (and very flexible) way to check all obvious passwords from Password000 to Password999.

Combination Attack
You have two dictionaries. We combine each word from one dictionary with every word from another. By default, the words are combined as is, but you can increase the number of possible combinations by allowing delimiters (such as space, underscore and other signs), checking upper/lower case combinations or using extra mutations.

Hybrid Attack
This is one of the more interesting attacks out there. In a sense, Hybrid attacks come very close to how real human intruders think. The Hybrid attacks integrates ElcomSoft’s experience in dealing with password recovery. We’ve seen many (think thousands) weak passwords, and were able to generalize ways people are making them. Dates, names, dictionary words, phrases and simple character substitutions are the most common things folks do to make their passwords ‘hard to guess’. The new Hybrid attack will handle the ‘hard’ part.

Technically, the Hybrid attack uses one or more dictionaries with common words, and one or more .rul files specifying mutation rules. We’re supplying a few files with the most commonly used mutation rules:

Common.rul – integrates the most commonly used mutations. In a word, we’ve seen those types of passwords a lot, so we were able to generalize and derive these rules.
Dates.rul – pretty much what it says. Combines dictionary words with dates in various formats. This is a pretty common way to construct weak passwords.
L33t.rul – the “leet” lingo. Uses various combinations of ASCII characters to replace Latin letters. C001 hackers make super-strong passwords with these… It takes minutes to try them all.
Numbers.rul – mixes dictionary words with various number combinations.

Newer iOS Forensic Toolkit Acquires iPhones in 20 Minutes, Including iOS 5

Tuesday, November 1st, 2011

iOS 5 Support

When developing the iOS 5 compatible version of iOS Forensic Toolkit, we found the freshened encryption to be only tweaked up a bit, with the exception of keychain encryption. The encryption algorithm protecting keychain items such as Web site and email passwords has been changed completely. In addition, escrow keybag now becomes useless to a forensic specialist. Without knowing the original device passcode, escrow keys remain inaccessible even if they are physically available.

What does enhanced security mean for the user? With iOS 5, they are getting a bit more security. Their keychain items such as Web site, email and certain application passwords will remain secure even if their phone falls into the hands of a forensic specialist. That, of course, will only last till the moment investigators obtain the original device passcode, which is only a matter of time if a tool such as iOS Forensic Toolkit is used to recover one.

What does this mean for the forensics? Bad news first: without knowing or recovering the original device passcode, some of the keychain items will not be decryptable. These items include Web site passwords stored in Safari browser, email passwords, and some application passwords.

Now the good news: iOS Forensic Toolkit can still recover the original plain-text device passcode, and it is still possible to obtain escrow keys from any iTunes equipped computer the iOS device in question has been ever synced or connected to. Once the passcode is recovered, iOS Forensic Toolkit will decrypt everything from the keychain. If there’s no time to recover the passcode or escrow keys, the Toolkit will still do its best and decrypt some of the keychain items.

Faster Operation

Besides adding support for the latest iOS 5, Elcomsoft iOS Forensic Toolkit becomes 2 to 2.5 times faster to acquire iOS devices. When it required 40 to 60 minutes before, the new version will take only 20 minutes. For example, the updated iOS Forensic Toolkit can acquire a 16-Gb iPhone 4 in about 20 minutes, or a 32-Gb version in 40 minutes.

EPPB: Now Recovering BlackBerry Device Passwords

Thursday, September 29th, 2011

Less than a month ago, we updated our Elcomsoft Phone Password Breaker tool with the ability to recover master passwords for BlackBerry Password Keeper and BlackBerry Wallet. I have blogged about that and promised the “next big thing” for BlackBerry forensics to be coming soon. The day arrived.

(more…)

New version of EPPB: Recovering Master Passwords for BlackBerry Password Keeper and BlackBerry Wallet

Tuesday, August 30th, 2011

Conferences are good. When attending Mobile Forensics Conference this year (and demoing our iOS Forensic Toolkit), we received a lot of requests for tools aimed at BlackBerry forensics. Sorry guys, we can’t offer the solution for physical acquisition of BlackBerries (yet), but there is something new we can offer right now.

RIM BlackBerry smartphones have been deemed the most secure smartphones on the market for a long, long time. They indeed are quite secure devices, especially when it comes to extracting information from the device you have physical access to (i.e. mobile phone forensics). It is unfortunate, however, that a great deal of that acclaimed security is achieved by “security through obscurity”, i.e. by not disclosing in-depth technical information on security mechanisms and/or their implementation. The idea is to make it more difficult for third parties to analyze. Some of us here at Elcomsoft are BlackBerry owners ourselves, and we are not quite comfortable with unsubstantiated statements about our devices’ security and blurry “technical” documentation provided by RIM. So we dig. (more…)

Elcomsoft iOS Forensic Toolkit highlighted in SANS Information Security Reading Room

Monday, August 15th, 2011

SANS Information Security Reading Room has recently publicized a whitepaper about iOS security where they mentioned our software – Elcomsoft iOS Forensic Toolkit – in a section about encryption. Kiel Thomas, the author of the whitepaper, explained one more time the main principles of iOS 4 encryption, which became stronger in comparison with iOS 3.x and how our toolkit can bypass new strong algorithms.

In its next part about iTunes Backups Kiel touches upon Elcomsoft Phone Password Breaker which virtually crunches backup passwords at speed of 35000 passwords per second (with AMD Radeon HD 5970) using both brute force and dictionary attacks, here are some benchmarks.

It seems the paper does not miss out on any nuance about iOS 4 and provides practical advice to either avoid or prevent from the depressing outcomes, such as loss of data. Closer to the end of the paper you will also find several sagacious tips for using the devices within organizations, including passcode management, a so called “first line of defense” which according Kiel’s view “can be matched to existing password policies”, however he inclines to use passwords instead of 4 digit passcodes.

And in conclusion the author discovers that smartphone and tablet security measurements resemble the ones of laptops, because they all belong to mobile devices.  Find out more details in the source itself: http://www.sans.org/reading_room/whitepapers/pda/security-implications-ios_33724
 

Have you chosen you next smartphone? Why not BlackBerry? :)

Friday, May 20th, 2011

Despite the fact that iPhone and Android keep on biting off greater parts of smartphone market, BlackBerry fans are still there, in spite of its various peculiarities. I won’t compare multi-touch displays, HD cameras, smart sensors, applications or anything like that. I’d rather talk about BlackBerry Desktop Software.  Yes, it can create backups, restore information from backups, and synchronize with Outlook only, period.  But that’s just not enough… (more…)