ElcomSoft blog

«…Everything you wanted to know about password recovery, data decryption,
mobile & cloud forensics…»

Archive for the ‘Tips & Tricks’ Category

The Art of iPhone Acquisition

Tuesday, July 9th, 2019

We all know how much important data is stored in modern smartphones, making them an excellent source of evidence. However, data preservation and acquisition are not as easy as they sound. There is no silver bullet or “fire and forget” solutions to solve cases or extract evidence on your behalf. In this article, which is loosely based on our three-day training program, we will describe the proper steps in the proper order to retain and extract as much data from the iPhone as theoretically possible.

(more…)

Digital Forensics: Training Required

Wednesday, June 26th, 2019

If you are working in the area of digital forensics, you might have wondered about one particular thing in the marketing of many forensic solutions. While most manufacturers are claiming that their tools are easy to use and to learn, those very same manufacturers offer training courses with prices often exceeding the cost of the actual tools. Are these trainings necessary at all if the tools are as easy to use as the marketing claims?

We believe so. A “digital” investigation is not something you can “fire and forget” by connecting a phone to a PC, running your favorite tool and pushing the button. Dealing with encrypted media, the most straightforward approach of brute-forcing your way is not always the best.

(more…)

Apple Watch Forensics 02: Analysis

Wednesday, June 26th, 2019

Over the last several years, the use of smart wearables has increased significantly. With 141 million smartwatch units sold in 2018, the number of smart wearables sold has nearly doubled compared to the year before. Among the various competitors, the Apple Watch is dominating the field with more than 22.5 million of wearable devices sold in 2018. Year over year, the Apple Watch occupies nearly half of the global market.

During the years, starting from 2015, Apple manufactured five different models with WatchOS, a wearable OS based on iOS and specifically developed for the Apple Watch.

Some initial an innovative research of the device was done by Heather Mahalik and Sarah Edwards back in 2015 on the original Apple Watch. The presentation is available on Sarah Edwards’s GitHub account (PDF).

Since then, not a lot of research was done on how to extract data from this kind of devices. I have been working on this topic over the last months, by researching methods on how to extract and analyze data stored on the internal memory of the Apple Watch.

(more…)

Apple TV and Apple Watch Forensics 01: Acquisition

Wednesday, June 19th, 2019

While the iPhone is Apple’s bread and butter product, is not the only device produced by the company. We’ve got the Mac (in desktop and laptop variations), the complete range of tablets (the iPad line, which is arguably the best tablet range on the market), the music device (HomePod), the wearable (Apple Watch), and the Apple TV. In today’s article, we are going to cover data extraction from Apple TV and Apple Watch. They do contain tons of valuable data, and are often the only source of evidence.

(more…)

The Most Unusual Things about iPhone Backups

Tuesday, June 18th, 2019

If you are familiar with breaking passwords, you already know that different tools and file formats require a very different amount of efforts to break. Breaking a password protecting a RAR archive can take ten times as long as breaking a password to a ZIP archive with the same content, while breaking a Word document saved in Office 2016 can take ten times as long as breaking an Office 2010 document. With solutions for over 300 file formats and encryption algorithms, we still find iTunes backups amazing, and their passwords to be very different from the rest of the crop in some interesting ways. In this article we tried to gather everything we know about iTunes backup passwords to help you break (or reset) their passwords in the most efficient way.

(more…)

Forensic Implications of iOS Jailbreaking

Wednesday, June 12th, 2019

Jailbreaking is used by the forensic community to access the file system of iOS devices, perform physical extraction and decrypt device secrets. Jailbreaking the device is one of the most straightforward ways to gain low-level access to many types of evidence not available with any other extraction methods.

On the negative side, jailbreaking is a process that carries risks and other implications. Depending on various factors such as the jailbreak tool, installation method and the ability to understand and follow the procedure will affect the risks and consequences of installing a jailbreak. In this article we’ll talk about the risks and consequences of using various jailbreak tools and installation methods.

(more…)

Step by Step Guide to iOS Jailbreaking and Physical Acquisition

Thursday, May 30th, 2019

Unless you’re using GrayShift or Cellebrite services for iPhone extraction, jailbreaking is a required pre-requisite for physical acquisition. Physical access offers numerous benefits over other types of extraction; as a result, jailbreaking is in demand among experts and forensic specialists.

The procedure of installing a jailbreak for the purpose of physical extraction is vastly different from jailbreaking for research or other purposes. In particular, forensic experts are struggling to keep devices offline in order to prevent data leaks, unwanted synchronization and issues with remote device management that may remotely block or erase the device. While there is no lack of jailbreaking guides and manuals for “general” jailbreaking, installing a jailbreak for the purpose of physical acquisition has multiple forensic implications and some important precautions.

When performing forensic extraction of an iOS device, we recommend the following procedure.

(more…)

Physical Extraction and File System Imaging of iOS 12 Devices

Thursday, February 21st, 2019

The new generation of jailbreaks has arrived for iPhones and iPads running iOS 12. Rootless jailbreaks offer experts the same low-level access to the file system as classic jailbreaks – but without their drawbacks. We’ve been closely watching the development of rootless jailbreaks, and developed full physical acquisition support (including keychain decryption) for Apple devices running iOS 12.0 through 12.1.2. Learn how to install a rootless jailbreak and how to perform physical extraction with Elcomsoft iOS Forensic Toolkit.

Jailbreaking and File System Extraction

We’ve published numerous articles on iOS jailbreaks and their connection to physical acquisition. Elcomsoft iOS Forensic Toolkit relies on public jailbreaks to gain access to the device’s file system, circumvent iOS security measures and access device secrets allowing us to decrypt the entire content of the keychain including keychain items protected with the highest protection class.

(more…)

iPhone Physical Acquisition: iOS 11.4 and 11.4.1

Tuesday, February 5th, 2019

The two recent jailbreaks, unc0ver and Electra, have finally enabled file system extraction for Apple devices running iOS 11.4 and 11.4.1. At this time, all versions of iOS 11 can be jailbroken regardless of hardware. Let’s talk about forensic consequences of today’s release: keychain and file system extraction.

(more…)

Life after Trim: Using Factory Access Mode for Imaging SSD Drives

Wednesday, January 16th, 2019

Many thanks to Roman Morozov, ACELab technical support specialist, for sharing his extensive knowledge and expertise and for all the time he spent ditching bugs in this article.

SSDs are weird. They are weird in the way they write data, and even weirder in the way they delete information. In the good old days of striped magnetic recording, one could delete a file and rest assured its content was still there until overwritten at some (hopefully distant) moment in the future; not so on an SSD.

SSDs are different. They are different in handling deleted data, wiping evidence irreversibly in the background like they were criminals’ best friends. Just power on the SSD, and it’ll start background garbage collection, erasing trimmed blocks even if you connected it through a write blocker. Image the SSD, and you won’t find anything in the “empty” areas – even if the actual data was still there at the time of the imaging. One more thing: your SSD has more storage capacity than it says on the box. 5 to 15% of the physical storage capacity is dedicated for a non-addressable pool; any data one deletes from the SSD that is subsequently trimmed by the OS can go straight into that pool, without any chance of accessing or even addressing the blocks.

Until very recently your only way of accessing deleted evidence on an SSD would be taking the chips off and performing a labour-intensive, time-consuming (let alone extremely expensive) chip-off analysis. We asked our partners from a forensic data recovery lab, and they told us they can do a four-chip SSD in a matter of two weeks. They also said they’d rather steer clear of the recent ten-chip SSDs, and they won’t do anything about encryption.

Did I say encryption? It could be easier than you think. A recent discovery points out that Windows built-in BitLocker protection tends to delegate the job of encrypting data to the SSD controller (as opposed to doing the encryption on the computer using the CPU). As found in the research, many consumer-grade SSDs take it easy, keeping the encryption key unprotected in the storage chips on the SSD.

In this article, we’ll talk about a recent development in SSD forensics allowing to prevent background trimming of evidence and providing access to the entire storage capacity of the disk including non-addressable areas. This method employs a so-called factory access mode. However, before we talk about factory access mode, let us first have a look at how SSDs store information and why it is so easy to destroy evidence and so insanely difficult to recover it. (more…)