Few days ago we have updated our iOS Forensic Toolkit to version 1.15 which includes some bugfixes and improvements and, most notably, supports passcode recovery on the new iPad (also known as iPad 3). There are no significant changes from the practical point of view (i.e. the process of passcode recovery is still exactly the same), but there is something new under the hood. So if you’re interested in iOS security and how stuff works, please read on.
It’s been almost two weeks since we have released updated version of Elcomsoft Phone Password Breaker that is capable of downloading backups from the iCloud and we have seen very diverse feedback ever since. Reading through some articles or forum threads it became quite evident that many just do not understand what we have actually done and what are the implications. So I am taking another try to clarify things.
When it comes to adding new features to our products we try to focus on our customers’ needs and it is my pleasure today to announce a preview (or beta) version of our Phone Password Breaker tool with new features requested (or inspired) by our valued customers users 🙂
We’ve analyzed 17 popular password management apps available for Apple iOS and BlackBerry platforms, including free and commercially available tools, and discovered that no single password keeper app provides a claimed level of protection. None of the password keepers except one are utilizing iOS or BlackBerry existing security model, relying on their own implementation of data encryption. ElcomSoft research shows that those implementations fail to provide an adequate level of protection, allowing an attacker to recover encrypted information in less than a day if user-selectable Master Password is 10 to 14 digits long.
Today, we released an updated version of iOS Forensic Toolkit. It’s not as much of an update to make big news shout, but the number of improvements here and there warrants a blog post, and is definitely worth upgrading to if you’re dealing with multiple iPhones on a daily basis.
Attacking Wi-Fi passwords is near hopeless if a wireless hotspot is properly secured. Today’s wireless security algorithms such as WPA are using cryptographically sound encryption with long passwords. The standard enforces the use of passwords that are at least 8 characters long. Encryption used to protect wireless communications is tough and very slow to break. Brute-forcing WPA/WPA2 PSK passwords remains a hopeless enterprise even if a horde of GPU’s is employed. Which is, in general, good for security – but may as well inspire a false sense of security if a weak, easy to guess password is selected.