Posts Tagged ‘passcode’

Passwords are probably the oldest authentication method. Despite their age, passwords remain the most popular authentication method in today’s digital age. Compared to other authentication mechanisms, they have many tangible benefits. They can be as complex or as easy to remember as needed; they can be easy to use and secure at the same time (if used properly).

The number of passwords an average person has to remember is growing exponentially. Back in 2017, an average home user had to cope with nearly 20 passwords (presumably they would be unique passwords). An average business employee had to cope with 191 passwords. Passwords are everywhere. Even your phone has more than one password. Speaking of Apple iPhone, the thing may require as many as four (and a half) passwords to get you going. To make things even more complicated, the four and a half passwords are seriously related to each other. Let’s list them:

  • Screen lock password (this is your iPhone passcode)
  • iCloud password (this is your Apple Account password)
  • iTunes backup password (protects backups made on your computer)
  • Screen Time password (secures your device and account, can protect changes to above passwords)
  • One-time codes (the “half-password” if your account uses Two-Factor Authentication)

In this article, we will provide an overview on how these passwords are used and how they are related to each other; what are the default settings and how they affect your privacy and security. We’ll tell you how to use one password to reset another. We will also cover the password policies and describe what happens if you attempt to brute force the forgotten password.

(more…)

What can and what cannot be done with an iOS device using Touch ID/Face ID authentication as opposed to knowing the passcode? The differences are huge. For the sake of simplicity, we’ll only cover iOS 12 and 13. If you just want a quick summary, scroll down to the end of the article for a table.

BFU and AFU

Let’s get it out of the way: everything that’s listed below applies exclusively to AFU (After First Unlock) devices. You cannot use biometrics to unlock an iOS device that’s been restarted or powered on; such devices are in the state known as BFU (Before First Unlock).

BFU, Before First Unlock: The iOS device was restarted or powered off; you powered it on but cannot unlock it because it’s protected with an unknown passcode.

AFU, After First Unlock: The iOS device was unlocked (with a passcode) at least once after it’s been last rebooted or powered on.

Screen Lock: Unlocking the Device

Touch ID or Face ID can be only used to unlock AFU devices. In order to unlock a BFU device, you’ll have to use the passcode. Even if you manage to bypass the lock screen (via an exploit), you won’t be able to access most device data as it will be encrypted. The decryption key is generated when the user first unlocks the device; the key is based on the passcode.

(more…)

iPhone protection becomes tougher with each iteration. The passcode is extremely hard to break, and it’s just the first layer of defense. Even if the device is unlocked or if you know the passcode, it is not that easy and sometimes impossible to access all the data stored on the device. This includes, for example, conversations in Signal, one of the most secure messengers. Apple did a very good job as a privacy and security advocate.

This is why we brought our attention to cloud acquisition. We pioneered iCloud backup extraction several years ago, and we are working hard to acquire more data from the cloud: from the standard categories available at www.icloud.com (such as contacts, notes, calendars, photos and more) to hidden records as call logs, Apple Maps places and routes, third-party application data stored on iCloud drive (not accessible by any other means), iCloud keychain (the real gem!), and recently Messages (with iOS 11.4, they can be synced too).

Cloud acquisition is not as easy as it sounds. First, you need the user’s credentials – Apple ID and password at very least, and often the second authentication factor. Additionally, for some categories (such as the keychain and messages), you’ll also need the passcode of one of the ‘trusted’ devices. But even having all of those, you will still face the undocumented iCloud protocols, encryption (usually based on well-known standard algorithms, but sometimes with custom modifications), different data storage formats, code obfuscation and hundreds of other issues. We learned how to fool Two-Factor Authentication and extract and the authentication tokens from desktops. We are playing “cat and mouse” with Apple while they are trying to lock iCloud accounts when detecting that our software is being used to access the data. We have to monitor Apple’s changes and updates almost 24/7, installing every single beta version of iOS.

iCloud acquisition gives fantastic results. In most cases, you do not need the device itself (it may be lost or forgotten, or thousands miles away). You can obtain deleted data that is not stored on any physical device anymore. You can obtain tons of valuable evidence from all the devices connected to the account.

But as always, there are some “buts”. Sorry for the long intro, and let’s proceed to what we have done about iPhone physical acquisition.

(more…)

We loved what Apple used to do about security. During the past years, the company managed to build a complete, multi-layer system to secure its hardware and software ecosystem and protect its customers against common threats. Granted, the system was not without its flaws (most notably, the obligatory use of a trusted phone number – think SS7 vulnerability – for the purpose of two-factor authentication), but overall it was still the most secure mobile ecosystem on the market.

Not anymore. The release of iOS 11, which we praised in the past for the new S.O.S. mode and the requirement to enter a passcode in order to establish trust with a new computer, also made a number of other changes under the hood that we have recently discovered. Each and every one of these changes was aimed at making the user’s life easier (as in “more convenience”), and each came with a small trade off in security. Combined together, these seemingly small changes made devastating synergy, effectively stripping each and every protection layer off the previously secure system. Today, only one thing is protecting your data, your iOS device and all other Apple devices you have registered on your Apple account.

The passcode. This is all that’s left of iOS security in iOS 11. If the attacker has your iPhone and your passcode is compromised, you lose your data; your passwords to third-party online accounts; your Apple ID password (and obviously the second authentication factor is not a problem). Finally, you lose access to all other Apple devices that are registered with your Apple ID; they can be wiped or locked remotely. All that, and more, just because of one passcode and stripped-down security in iOS 11.

(more…)

So you’ve got an iPhone, and it’s locked, and you don’t know the passcode. This situation is so common, and the market has so many solutions and “solutions” that we felt a short walkthrough is necessary.

What exactly can be done to the device depends on the following factors:

Hardware Generation

From the point of view of mobile forensics, there are three distinct generations:

  1. iPhone 4 and older (acquisition is trivial)
  2. iPhone 4S, 5 and 5C (32-bit devices, no Secure Enclave, jailbreak required, must be able to unlock the device)
  3. iPhone 5S, 6/6S, 6/6S Plus and newer (64-bit devices, Secure Enclave, jailbreak required, passcode must be known and removed in Settings)

(more…)

With hardware-backed full-disk encryption and additional protection of sensitive user data located in the keychain, Apple iOS is the most secure mobile operating system out there. Acquisition approaches that are traditional for Android and Windows Phone devices (namely, JTAG, ISP and chip-off) are completely meaningless for iOS devices running even years-old generations of the system. Bypassing screen lock password (passcode) has also been long considered to be useless due to the fact user data stored in the keychain is additionally encrypted with a secure key based on the passcode.

While we can’t do much with the former, our recent research shows that the latter is not entirely true. Bypassing the passcode does reveal quite a bit of information that can be useful for an investigation. And this is not just a theoretical research. We are building this functionality into a ready-to-use commercial tool, iOS Forensic Toolkit, to allow extracting data from locked iDevices – providing they have a jailbreak installed. The tool will allow pull available information from devices locked with an unknown passcode. That includes devices that were powered on (or rebooted) and never unlocked. Naturally, a pre-installed jailbreak is required in order to access the data.

(more…)

Few days ago we have updated our iOS Forensic Toolkit to version 1.15 which includes some bugfixes and improvements and, most notably, supports passcode recovery on the new iPad (also known as iPad 3). There are no significant changes from the practical point of view (i.e. the process of passcode recovery is still exactly the same), but there is something new under the hood. So if you’re interested in iOS security and how stuff works, please read on.

(more…)

Today, we released an updated version of iOS Forensic Toolkit. It’s not as much of an update to make big news shout, but the number of improvements here and there warrants a blog post, and is definitely worth upgrading to if you’re dealing with multiple iPhones on a daily basis.

The newly updated Elcomsoft iOS Forensic Toolkit now supports iOS 5.1 and adds a number of small and not-so-small enhancements to the already sound package. The ability to try top 100 most common passcodes gives a chance to recover a passcode in a matter of minutes. There’s one more thing new with the updated iOS Forensic Toolkit: an iPhone booted with iOS Forensic Toolkit now displays a small ElcomSoft logo instead of the default one.

Top 100 Passcodes

We’ve seen lots of iPhones. Most are locked with simple, easy to remember passcodes. We were able to compile a list of most commonly used passcodes. There are the obvious ones like 1111, 2222, 1234, 5555, vertical raw 2580, and there are many ‘convenience’ passcodes that are just easier to remember or enter on the iPhone’s screen. There’s a whole range of passcodes representing possible dates significant to iPhone owners; these passcodes range from early 1930 to 2020. The updated iOS Forensic Toolkit will now try these passcodes before launching a brute-force attack.

How good are the chances? A recent study demonstrated that as many as 15% of all passcode sets are represented by only 10 different passcodes (out of 10,000 possible combinations). That’s 1 in 7 iPhones unlocked within minutes or even seconds.

New Logo

iPhones booted by iOS Forensic Toolkit will now display ElcomSoft logo when loading. Not a big deal, but a nice and pleasant for us visual effect 🙂

We also added a few other improvements and enhancements here and there, making the new version a recommended update.

SANS Information Security Reading Room has recently publicized a whitepaper about iOS security where they mentioned our software – Elcomsoft iOS Forensic Toolkit – in a section about encryption. Kiel Thomas, the author of the whitepaper, explained one more time the main principles of iOS 4 encryption, which became stronger in comparison with iOS 3.x and how our toolkit can bypass new strong algorithms.

In its next part about iTunes Backups Kiel touches upon Elcomsoft Phone Password Breaker which virtually crunches backup passwords at speed of 35000 passwords per second (with AMD Radeon HD 5970) using both brute force and dictionary attacks, here are some benchmarks.

It seems the paper does not miss out on any nuance about iOS 4 and provides practical advice to either avoid or prevent from the depressing outcomes, such as loss of data. Closer to the end of the paper you will also find several sagacious tips for using the devices within organizations, including passcode management, a so called “first line of defense” which according Kiel’s view “can be matched to existing password policies”, however he inclines to use passwords instead of 4 digit passcodes.

And in conclusion the author discovers that smartphone and tablet security measurements resemble the ones of laptops, because they all belong to mobile devices.  Find out more details in the source itself: http://www.sans.org/reading_room/whitepapers/pda/security-implications-ios_33724