All posts by Vladimir Katalov

We have recently updated Elcomsoft iOS Forensic Toolkit, adding the ability to acquire the file system from a wide range of iOS devices. The supported devices include models ranging from the iPhone 5s through the iPhone X regardless of the iOS version; more on that in iOS Device Acquisition with checkra1n Jailbreak. In today’s update (for both Windows and macOS platforms as usual), we’ve added the ability to extract select keychain records in the BFU (Before First Unlock) mode. We have a few other changes and some tips on extracting locked and disabled devices.

BFU Forensics

The BFU stands for “Before First Unlock”. BFU devices are those that have been powered off or rebooted and have never been subsequently unlocked, not even once, by entering the correct screen lock passcode.

In Apple’s world, the content of the iPhone remains securely encrypted until the moment the user taps in their screen lock passcode. The screen lock passcode is absolutely required to generate the encryption key, which in turn is absolutely required to decrypt the iPhone’s file system. In other words, almost everything inside the iPhone remains encrypted until the user unlocks it with their passcode after the phone starts up.

It is the “almost” part of the “everything” that we target in this update. We’ve discovered that certain bits and pieces are available in iOS devices even before the first unlock. In particular, some keychain items containing authentication credentials for email accounts and a number of authentication tokens are available before first unlock. This is by design; these bits and pieces are needed to allow the iPhone to start up correctly before the user punches in the passcode. (more…)

We’ve just announced a major update to iOS Forensic Toolkit, now supporting the full range of devices that can be exploited with the unpatchable checkra1n jailbreak.  Why is the checkra1n jailbreak so important for the forensic community, and what new opportunities in acquiring Apple devices does it present to forensic experts? We’ll find out what types of data are available on both AFU (after first unlock) and BFU (before first unlock) devices, discuss the possibilities of acquiring locked iPhones, and provide instructions on installing the checkra1n jailbreak. (more…)

Are you excited about the new checkm8 exploit? If you haven’t heard of this major development in the world of iOS jailbreaks, I would recommend to read the Technical analysis of the checkm8 exploit aricle, as well as Developer of Checkm8 explains why iDevice jailbreak exploit is a game changer. The good news is that a jailbreak based on this exploit is already available, look at the checkra1n web site.

The jailbreak based on checkm8 supports iPhone devices based on Apple’s 64-bit platform ranging from the iPhone 5s all the way up to the iPhone 8 and iPhone X. Unlike previous jailbreaks, this one supports most iOS versions, up to and including iOS 13.2.2 at the time of  this writing. Support for future versions of iOS is also possible due to the nature of this exploit. Most iPads are also supported. Currently, there is no support for the Apple Watch, though theoretically it is possible for Series 1, 2 and 3. The Apple TV series 4 and 4K are supported by the exploit, and a jailbreak for series 4 is already available.

What does that mean for the forensic crowd? Most importantly, the jailbreak can be installed even on locked devices, as it works through DFU mode. That does not mean that you will be able to break the passcode. While you can extract some data from a locked device / unknown passcode, it won’t be much. From the other side, the jailbreak allows to dump the complete image of the file system if the passcode is known. This works for all devices from the iPhone 5s to X, many iPads, and Apple TV 4.

In this article, we will briefly describe how to install the jailbreak on Apple TV and what you can expect out of it.

(more…)

Passwords are probably the oldest authentication method. Despite their age, passwords remain the most popular authentication method in today’s digital age. Compared to other authentication mechanisms, they have many tangible benefits. They can be as complex or as easy to remember as needed; they can be easy to use and secure at the same time (if used properly).

The number of passwords an average person has to remember is growing exponentially. Back in 2017, an average home user had to cope with nearly 20 passwords (presumably they would be unique passwords). An average business employee had to cope with 191 passwords. Passwords are everywhere. Even your phone has more than one password. Speaking of Apple iPhone, the thing may require as many as four (and a half) passwords to get you going. To make things even more complicated, the four and a half passwords are seriously related to each other. Let’s list them:

  • Screen lock password (this is your iPhone passcode)
  • iCloud password (this is your Apple Account password)
  • iTunes backup password (protects backups made on your computer)
  • Screen Time password (secures your device and account, can protect changes to above passwords)
  • One-time codes (the “half-password” if your account uses Two-Factor Authentication)

In this article, we will provide an overview on how these passwords are used and how they are related to each other; what are the default settings and how they affect your privacy and security. We’ll tell you how to use one password to reset another. We will also cover the password policies and describe what happens if you attempt to brute force the forgotten password.

(more…)

While the dust surrounding the controversy of rushed iOS 13 release settles, we are continuing our research on what has changed in iOS forensics. In this article we’ll review the new policy on USB restrictions and lockdown record expiration in the latest iOS release. We’ll also analyze how these changes affect experts investigating iPhone devices updated to the latest OS release.

The real purpose of the USB restricted mode may not be immediately obvious, and the new enhancements may cause even more confusion. In our view, using USB accessories while the device is locked creates no additional risk to the user’s security and privacy. However, if we assume that this mode is aimed straight at certain forensic extraction and passcode-cracking solutions (such as GrayKey), the target of the USB restriction would be law enforcement agencies.

USB restricted mode made its appearance in iOS 11.4.1 and further enhanced in iOS 12. We posted five articles on the matter; do check them out if you don’t know what this feature is for. We also recommend the original Apple KB article “Using USB accessories with iOS 11.4.1 and later”.

Apple is still to update its iOS Security Guide. The May 2019 version (iOS 12.3) of the Guide defines USB restricted mode as follows.

(more…)

When you perform Apple iCloud acquisition, it almost does not matter what platform to use, Windows or macOS (I say almost, because some differences still apply, as macOS has better/native iCloud support). Logical acquisition can be done on any platform as well. But when doing full file system acquisition of jailbroken devices using Elcomsoft iOS Forensic Toolkit, we strongly recommend using macOS. If you are strongly tied to Windows, however, there are some things you should know.

(more…)

With over half a million users, Signal is an incredibly secure cross-platform instant messaging app. With emphasis on security, there is no wonder that Signal is frequently picked as a communication tool by those who have something to hide. Elcomsoft Phone Viewer can now decrypt Signal databases extracted from the iPhone via physical (well, file system) acquisition, and that was a tough nut to crack.

What exactly makes Signal so difficult to crack? Let us first look at how one can gain access to users’ communications occurring in other instant messengers.

Interception: the MITM attack

The first method is interception. One can attempt to intercept conversations in transit. This in turn is very difficult as everyone is touting point-to-point encryption. While technically the traffic can be intercepted, decrypting it will require a malicious app installed on the end-user device (such as the infamous NSO Group spyware). Without direct government intervention or proposed encryption backdoors one can hardly ever intercept messaging with a MITM attack. It is very important to understand that even if your iPhone is secure, the other party’s device running the iOS, Android or desktop app (which is much easier to break) might be compromised. If the other party is compromised, all your communications with that party will be compromised as well.

Signal implements special protection measures against MITM attacks, making certificate spoofing useless and complicating malware-based attacks. (more…)

The cloud becomes an ever more important (sometimes exclusive) source of the evidence whether you perform desktop or cloud forensics. Even if you are not in forensics, cloud access may help you access deleted or otherwise inaccessible data.

Similar to smartphones or password-protected desktops, cloud access is a privilege that is supposed to be only available to the rightful account owner. You would need a login and password and possibly the second factor. These aren’t always available to forensic experts. In fact, it won’t be easy to access everything stored in the cloud if you have all the right credentials.

Apple iCloud is one of the most advanced cloud solutions on the market, with lots of services available. These include comprehensive device backups, synchronization services across the entire Apple ecosystem including the Apple TV and Apple Watch devices, file storage, password management, home IoT devices, Health data and more. And it is pretty secure.

Let’s review all the possibilities of accessing Apple iCloud data with or without a password.

(more…)

iOS 13 is on the way. While the new mobile OS is still in beta, so far we have not discovered many revolutionary changes in the security department. At the same time, there are quite a few things forensic specialists will need to know about the new iteration of Apple’s mobile operating system. In this article, we’ll be discussing the changes and their meaning for the mobile forensics.

iCloud backups

We’ve seen several changes to iCloud backups that break third-party tools not designed with iOS 13 in mind. Rest assured we’ve updated our tools to support iOS 13 iCloud backups already. We don’t expect the backup format to change once iOS 13 is officially released, yet we keep an eye on them.

First, Apple has changed the protocol and encryption. There’s nothing major, but those changes were more than enough to effectively block all third-party tools without explicit support for iOS 13.

Second, cloud backups (at least in the current beta) now contain pretty much the same set of info as unencrypted local backups. Particularly missing from iCloud backups made with iOS 13 devices are call logs and Safari history. This information is now stored exclusively as “synchronized data”, which makes it even more important for the investigator to extract synced evidence in addition to backups. Interestingly, nothing was changed about synced data; you can still use the same tools and sign in with either Apple ID/password/2FA or authentication tokens. (more…)

We all know how much important data is stored in modern smartphones, making them an excellent source of evidence. However, data preservation and acquisition are not as easy as they sound. There is no silver bullet or “fire and forget” solutions to solve cases or extract evidence on your behalf. In this article, which is loosely based on our three-day training program, we will describe the proper steps in the proper order to retain and extract as much data from the iPhone as theoretically possible.

(more…)