Archive for March, 2016

BitLocker is a popular full-disk encryption scheme employed in all versions of Windows (but not in every edition) since Windows Vista. BitLocker is used to protect stationary and removable volumes against outside attacks. Since Windows 8, BitLocker is activated by default on compatible devices if the administrative account logs in with Microsoft Account credentials. BitLocker protection is extremely robust, becoming a real roadblock for digital forensics.

Various forensic techniques exist allowing experts overcoming BitLocker protection. Capturing a memory dump of a computer while the encrypted volume is mounted is one of the most frequently used venues of attack. However, acquiring BitLocker-encrypted volumes may become significantly more difficult with the release of Windows 10 November Update. In this article, we’ll explore existing methods of recovering BitLocker volumes, look at what has changed with November Update, and review the remaining acquisition paths.

“Had San Bernardino shooter Syed Rizwan Farook used an Android phone, investigators would have had a better chance at accessing the data”, says Jack Nicas in his article in The Wall Street Journal. Indeed, the stats suggest that only 10 per cent of the world’s 1.4 billion Android phones are encrypted, compared with 95 per cent of Apple’s iPhones. Of those encrypted, a major number are using Nexus smartphones that have encryption enforced by default.

What is the reason behind this low encryption adoption rate among Android users? Let’s first have a look at how encryption is enforced by two major mobile OS manufacturers, then look at how it’s implemented by either company. (more…)


The recent update to one of our oldest tools, Elcomsoft System Recovery, brought long-overdue compatibility with Windows systems that sign in with online authentication via Microsoft Account. While the tool can reset Microsoft Account passwords to allow instant logins to otherwise locked accounts, this is not the point. The point is that we have finally laid our hands on something that can help us break into a major online authentication service, the Microsoft Account.

For that to happen, Elcomsoft System Recovery can export the locally cached hash to the user’s Microsoft Account password for offline recovery. Running a GPU-assisted attack on the password (using Elcomsoft Distributed Password Recovery or similar tool) allows quickly enumerating the passwords with a combination of dictionary and brute-force attacks, in many cases resulting in the recovery of the original plain-text password. This isn’t exactly new, since the same thing could be done to local Windows accounts a decade ago. What DOES change though is the types and amounts of information can be accessed with the Microsoft Account password we’ve just recovered. This is one of those cases where a seemingly small change brings a plethora of new possibilities to digital forensics.