Posts Tagged ‘Elcomsoft Distributed Password Recovery’

If you are familiar with breaking passwords, you already know that different tools and file formats require a very different amount of efforts to break. Breaking a password protecting a RAR archive can take ten times as long as breaking a password to a ZIP archive with the same content, while breaking a Word document saved in Office 2016 can take ten times as long as breaking an Office 2010 document. With solutions for over 300 file formats and encryption algorithms, we still find iTunes backups amazing, and their passwords to be very different from the rest of the crop in some interesting ways. In this article we tried to gather everything we know about iTunes backup passwords to help you break (or reset) their passwords in the most efficient way.

(more…)

In Apple’s world, the keychain is one of the core and most secure components of macOS, iOS and its derivatives such as watchOS and tvOS. The keychain is intended to keep the user’s most valuable secrets securely protected. This includes protection for authentication tokens, encryption keys, credit card data and a lot more. End users are mostly familiar with one particular feature of the keychain: the ability to store all kinds of passwords. This includes passwords to Web sites (Safari and third-party Web browsers), mail accounts, social networks, instant messengers, bank accounts and just about everything else. Some records (such as Wi-Fi passwords) are “system-wide”, while other records can be only accessed by their respective apps. iOS 12 further develops password auto-fill, allowing users to utilize passwords they stored in Safari in many third-party apps.

If one can access information saved in the keychain, one can then gain the keys to everything managed by the device owner from their online accounts to banking data, online shopping, social life and much more.

Apple offers comprehensive documentation for developers on keychain services, and provides additional information in iOS Security Guide.

In this article we assembled information about all existing methods for accessing and decrypting the keychain secrets.

(more…)

According to surveys, the average English-speaking consumer maintains around 27 online accounts. Memorizing 27 unique, cryptographically secure passwords is nearly impossible for a person one could reasonably call “average”. As a result, the average person tends to reuse passwords, which means that a single password (or its simple variations) can be used to protect multiple online accounts and services. The same passwords are very likely to be chosen to protect access to offline resources such as encrypted archives and documents. In fact, several independent researches published between 2012 and 2016 suggest that between 59 and 61 per cent of consumers reuse passwords.

Considering how consistent the numbers are between multiple researches carried out over the course of four years, we can safely assume that around 60% of consumers reuse their passwords. How can this data help us break passwords, and how did we arrive to the value of 70% in the title? Read along to find out! (more…)

This article opens a new series dedicated to breaking passwords. It’s no secret that simply getting a good password recovery tool is not enough to successfully break a given password. Brute-force attacks are inefficient for modern formats (e.g. encrypted Office 2013 documents), while using general dictionaries can still be too much for speedy attacks and too little to actually work. In this article, we’ll discuss the first of the two relatively unknown vectors of attack that can potentially break 30 to 70 per cent of real-world passwords in a matter of minutes. The second method will be described in the follow-up article. (more…)

Not all passwords provide equal protection. Some formats are more resistant to brute-force attacks than others. As an example, Microsoft Office 2013 and 2016 employ a smart encryption scheme that is very slow to decrypt. Even the fastest available GPU units found in NVIDIA’s latest GeForce GTX 1080 will only allow trying some 7100 passwords per second.

image001

One solution is employing a custom dictionary, possibly containing the user’s passwords that were easier to break. Observing the common pattern in those other passwords may allow creating a custom mask that could greatly reduce the number of possible combinations.

(more…)

statistics_color6

How often do you think forensic specialists have to deal with encrypted containers? Compared with office documents and archives that are relatively infrequent, every second case involves an encrypted container. It may vary, but these evaluations are based on a real survey conducted by our company.

It is hard to overestimate the importance of the topic. In the first part of our story we discussed the way of getting access to encrypted volumes using an encryption key. Now, let’s see which other ways can be used.

Unlike Elcomsoft Forensic Disk Decryptor, Elcomsoft Distributed Password Recovery does not search for existing decryption keys. Instead, it tries to unlock password-protected disks by attacking the password. The tool applies an impressive variety of techniques for attacking the password. In this case, the whole disk encryption scheme is only as strong as its password. Fortunately, the tool can execute a wide range of attacks including wordlist attack, combination attacks, mask attacks, smart attacks and so on and so forth, with advanced GPU acceleration and distributed processing on top of that. The whole sophisticated arsenal comes in particularly handy if we speak about more or less secure passwords.

(more…)

In the world of Windows dominance, Apple’s Mac OS X enjoys a healthy market share of 9.5% among desktop operating systems. The adoption of Apple’s desktop OS (macOS seems to be the new name) is steadily growing. This is why we are targeting Mac OS with our tools.

This time, let’s talk about Mac OS X user account passwords. Not only will a user password allow accessing their Mac, but it will also allow decrypting FileVault 2 volumes that are otherwise securely encrypted with virtually unbreakable XTS-AES.

Attacking FileVault 2

FileVault 2 is Apple’s take on whole-disk encryption. Protecting the entire startup partition, FileVault 2 volumes can be unlocked with either of the following:

  • 256-bit XTS-AES key
  • Recovery Key
  • User password from any account with “unlock” privileges

There is also an additional unlock method available called Institutional Recovery Key. These recovery keys are created when system administrators enable FileVault 2 encryption with FileVaultMaster.keychain. This method requires additional steps to activate, and is typically used in organizations with centralized keychain management.

(more…)

During the last several years, progress on the CPU performance front has seemingly stopped. Granted, last-generation CPUs are cool, silent and power-efficient. Anecdotal evidence: my new laptop (a brand new Macbook) is about as fast as the Dell ultrabook it replaced. The problem? I bought the Dell laptop some five years ago. Granted, the Dell was thicker and noisier. It’s battery never lasted longer than a few hours. But it was about as fast as the new Macbook.

Computer games have evolved a lot during the last years. Demanding faster and faster video cards, today’s games are relatively lax on CPU requirements. Manufacturers followed the trend, continuing the performance race. GPUs have picked up where CPUs have left.

NVIDIA has recently released a reference design for GTX 1080 boards based on the new Pascal architecture. Elcomsoft Distributed Password Recovery 3.20 adds support for the new architecture. What does it mean for us?

(more…)

Investigators start seeing BitLocker encrypted volumes more and more often, yet computer users themselves may be genuinely unaware of the fact they’ve been encrypting their disk all along. How can you break into BitLocker encryption? Do you have to brute-force the password, or is there a quick hack to exploit?

We did our research, and are ready to share our findings. Due to the sheer amount of information, we had to break this publication into two parts. In today’s Part I, we’ll discuss the possibility of using a backdoor to hack our way into BitLocker. This publication will be followed by Part II, in which we’ll discuss brute-force possibilities if access to encrypted information through the backdoor is not available. (more…)

BitLocker is a popular full-disk encryption scheme employed in all versions of Windows (but not in every edition) since Windows Vista. BitLocker is used to protect stationary and removable volumes against outside attacks. Since Windows 8, BitLocker is activated by default on compatible devices if the administrative account logs in with Microsoft Account credentials. BitLocker protection is extremely robust, becoming a real roadblock for digital forensics.

Various forensic techniques exist allowing experts overcoming BitLocker protection. Capturing a memory dump of a computer while the encrypted volume is mounted is one of the most frequently used venues of attack. However, acquiring BitLocker-encrypted volumes may become significantly more difficult with the release of Windows 10 November Update. In this article, we’ll explore existing methods of recovering BitLocker volumes, look at what has changed with November Update, and review the remaining acquisition paths.
(more…)