All posts by Oleg Afonin

Thecus has been manufacturing NAS devices for more than 15 years. The company develops an in-house Linux-based NAS OS, the ThecusOS. At this time, the most current version of the OS is ThecusOS 7. Thecus advertises secure data encryption in most of its NAS devices. The company’s volume-based encryption tool allows users to fully encrypt their entire RAID volume, defending essential data in instances of theft of the physical device. We found Thecus’ implementation of encryption somewhat unique. In this research, we’ll verify the manufacturer’s claims and check just how secure is Thecus’ implementation of 256-bit AES encryption.

Abstract and Summary

Thecus uses volume-based 256-bit AES encryption with a single, fixed, unchangeable encryption key. The 3968-byte (31744-bit) encryption key file is generated at the time the user creates a new encrypted volume based on the user’s password (4-16 characters, 0-9, a-z, A-Z only). Creating several encrypted volumes with the same password produces different encryption key files.

The encryption key is stored on an external USB drive (the only, forced option) and does not have any additional protection.

The encrypted volume is automatically unlocked once the user inserts the USB drive that contains the correct encryption key.

The original password the user typed when creating an encrypted volume is never used again, anywhere. Users cannot change the encryption password. Users cannot encrypt existing data. Users cannot permanently decrypt encrypted volumes. Any changes to encryption require deleting and re-creating the volume and filling it up with data. The entire encryption scheme lacks any sort of technical documentation.

The entire protection scheme is completely undocumented. For example, it is not clear what the password is used for since the user never has to type it again (ever) to mount or otherwise access encrypted volumes.

Note: SED is supported by ThecusOS but was not tested in our lab.

Test Bench

We analyzed a Thecus N2810 device based on an Intel Celeron Processor N2810. A non-SED WD Red HDD was used to set up the NAS perform the analysis. The NAS was running on the latest available version of ThecusOS 7.

Volume-Based Encryption

ThecusOS supports volume-based encryption. Unlike folder-based encryption that allows protecting (or not protecting) individual shares, volume-based encryption protects the entire RAID volume. The closest analogy to volume-based encryption would be BitLocker in Microsoft Windows or FileVault 2 in Apple macOS. However, the Thecus implementation is significantly more basic compared to Apple’s or Microsoft’s full-disk encryption tools.


Users can only encrypt newly created, empty RAID volumes (regardless of the number of disks; a single-disk RAID volume can be encrypted just as easily as a volume spanning across multiple physical disks).

Encrypting an existing volume is not possible. One must first remove the volume, create a new one and tick the “Encrypt” box. As a result, encrypting volumes with existing data is not supported.

The first step is creating a new volume:

The optional encryption feature requires a password. The password must be 4 to 16 characters long; character groups 0-9, a-z, A-Z are supported (no special characters and no local characters).

Users don’t have to memorize that password as they’ll never have to type it again to access the encrypted data. Instead, ThecusOS will generate a 3968-byte (31744-bit) encryption key, and store that key on an external USB drive that must be connected to the NAS at the time the encrypted volume is created.

Once the user inserts an external USB drive (e.g. a flash drive) into one of the available USB ports, the NAS saves the encryption key on that drive and creates and mounts the encrypted volume.

Mounting encrypted volumes

The encrypted volumes are mounted automatically when the user inserts a USB drive that contains the volume encryption key into any available USB port on the Thecus NAS. There are no additional prompts, and there is no need to open the Web UI.

The following scenarios are supported.

  1. The NAS is powered on or rebooted; no USB drive containing the encryption key is inserted. In this case, the encrypted volume is locked, and the data is not accessible.
    However, the NAS can still complete the boot sequence as the main OS (and some configuration files) are stored on a small NAND storage chip and not on the hard drive(s).
  2. The NAS is powered on or rebooted; the USB drive containing the encryption key is inserted. In this case, the encrypted volume will be mounted by the time the device completes the boot sequence.
  3. The most interesting scenario is when the NAS is powered on or rebooted without a USB drive inserted, and the user inserts the USB drive containing the encryption key at a later point. In this case, the OS will automatically recognize the USB drive, read the encryption key and automatically mount the encrypted volume.

Locking encrypted volumes

As we figured, encrypted volumes are mounted automatically when the user inserts the correct USB drive. What happens after the USB drive is removed? In this case, the NAS keeps the encrypted volume mounted. The volume remains mounted until the NAS is powered off or rebooted, or until the user manually locks the volume through the Web UI.


If you are used to BitLocker, you probably know it is easily possible to remove the password from an encrypted volume. Interestingly, BitLocker will not decrypt any data that has already been encrypted; instead, it’ll just store the unwrapped encryption key in the volume header, allowing the system to pick up the key and access information without a password. Any new information saved on such BitLocker volumes would be saved unencrypted.

With Thecus, the situation is much simpler. Users cannot remove encryption or permanently decrypt encrypted volumes, period. The only way to permanently decrypt the data is removing the encrypted volume, re-creating the volume without encryption and filling it up with data.

Changing the password: impossible

Decades ago, manufacturers came up with a brilliant idea of separating the binary keys that are used to actually encrypt and decrypt the data, and user-provided secrets that are used to access the data. In symmetric cryptography, only one unique binary encryption key may be used to encrypt and decrypt the data; this is called the Media Encryption Key (or Data Encryption Key). However, users can unlock encrypted data by using multiple different types of credentials such as plain-text passwords, credentials stored on secure smart cards or TPM modules, binary keys (files) or combinations of thereof. These credentials (Key Encryption Keys) are used to encrypt (wrap) the Media Encryption Key. Multiple different Key Encryption Keys may be used to wrap the same Media Encryption Key, allowing the user to instantly change their plain-text password, add or remove smart cards and other credentials.

ThecusOS 7 does not use the concept of Key Encryption Keys. The user’s original plain-text password is used to produce a single, fixed Media Encryption Key. Neither the password nor the encryption key can be changed after the volume is encrypted.


While users are required to enter a password when encrypting the volume, this password will never be used again anywhere in the ThecusOS interface. I was unable to find any references to this password in the Thecus technical documentation or the online knowledge base. The password is not used to decrypt data or to mount encrypted partitions. Users will never have to type that password again. In other words, the password seems completely redundant in this setup. The lack of a proper explanation, let alone comprehensive technical documentation, makes me shake my head.

ThecusOS produces different encryption keys when creating volumes protected with the same password. This is a good hint that the password is salted with some random data. The lack of proper documentation makes this guess as good as any others.

Thecus and SED Encryption

ThecusOS supports SED (Self-Encrypting Drive) encryption, as seen on the screen shot below.

We have not tested the SED implementation due to the lack of a compatible hard drive. Considering the cost and market positioning of the Thecus N2810, the model is likely to be used with consumer-grade NAS hard drives such as the Western Digital Red or Seagate Ironwolf series, both of which lack the SED support.

What Risks Are Covered by Thecus Security Model

The security model employed by the ThecusOS is stripped down to the bare essentials. I have the following remarks about the Thecus security model.

  1. It is not clear why the system prompts for a password if that password cannot be used to unlock volumes and cannot be changed. If the user’s password is only needed as a random seed of a sort, this must be properly disclosed and documented.
  2. The lack of any sort of technical documentation for the data protection scheme is discouraging. This might be passable for the home user and occasional small office use, but unacceptable for anything beyond that.
  3. The encryption key is stored on a separate USB drive. Users can conveniently insert that USB drive at any time to automatically unlock encrypted volumes. As a result, the entire protection scheme is based exclusively on “something you have”. Anyone who has access to the USB drive holding the encryption key will be able to mount encrypted volumes.

As one can see, it all comes down to whether or not the attacker has access to the USB drive containing the encryption keys.

If the USB encryption key is stored separately of the NAS unit, and the NAS is powered off, the encrypted data is protected against the theft of the hard drives and the theft of the whole NAS unit.

If the attacker has access to both the NAS unit and the USB drive containing the encryption key, the protection is nil.

Conclusion: Thecus Encryption vs. Microsoft BitLocker

When it comes to full-disk encryption, Microsoft BitLocker and Apple FileVault 2 are the first things that come to mind, with TrueCrypt and VeraCrypt being the most popular third-party implementations. Secure encryption, comprehensive key management and multiple methods for encrypting and unlocking volumes are supported by all of these crypto-containers.

When it comes to attached storage encryption, you are welcome back to the Stone Age. A typical NAS advertising 256-bit AES encryption lacks any kind of key management; often to the point the user cannot even change their encryption password without deleting the entire volume, re-creating, re-encrypting and re-filling with data. Many NAS manufacturers have no idea about the existence of separate Media Encryption Keys and Key Encryption Keys, let alone their multiple instances. A typical NAS sold to a home or small office user does not allow encrypting existing data or removing the password from encrypted volumes should you no longer need to protect them.

All of these statements are true for the ThecusOS 7. The lack of even the basic key management, the inability to change the encryption password, and the inability to encrypt or decrypt existing volumes makes Thecus NAS encryption one of the least flexible ever. The protection system lack transparency or any sort of technical documentation. How does the system come up with a 3968-byte encryption key based on the user’s 4 to 16-character password? In a case of data loss, is it possible to decrypt the data with the user’s password instead of the encryption key? Does the key contain the user’s password, the hash of a password, or is it mostly random data? None of these questions have answers in the technical documentation.

At the same time, the encryption implementation is simple and straightforward. Based on a file stored on a removable USB drive, the data would be impossible to decrypt without said USB drive (unless a vulnerability is found). This encryption would likely be sufficient to protect most data stored by home and small office users.

Challenges in Computer and Mobile Forensics: What to Expect in 2020

The past two years introduced a number of challenges forensic experts have never faced before. In 2018, Apple made it more difficult for the police to safely transport a seized iPhone to the lab by locking the USB port with USB restricted mode, making data preservation a challenge. The release of the A12 platform, also in 2018, made it difficult to unlock iOS devices protected with an unknown password, while this year’s release of iOS 13 rendered unlock boxes useless on iPhones based on the two most recent platforms.

On desktop and especially laptop computers, the widespread use of SSD drives made it impossible to access deleted data due to trim and garbage collection mechanisms. The users’ vastly increased reliance on cloud services and mass migration off the forensically transparent SMS platform towards the use of end-to-end encrypted messaging apps made communications more difficult to intercept and analyze.

Sheer amounts of data are greater than ever, making users rely more on external (attached) storage compared to using internal hard drives. Many attached storage devices are using secure encryption, some of them without even prompting the user. Extracting data from such devices becomes a challenge, while analyzing the huge amounts of information now requires significantly more time and effort.

The number of online accounts used by an average consumer grows steadily year over year. While password reuse and the use of cloud services to store and synchronize passwords makes experts’ jobs easier, the spread of secure, encrypted password management services is turning into a new challenge.

Knowing everyday challenges in desktop and mobile forensics, we can now peek into the future. (more…)

Skype synchronizes chats, text messages and files sent and received with the Microsoft Account backend. Accessing Skype conversation histories by performing a forensic analysis of the user’s Microsoft Account is often the fastest and easiest way to obtain valuable evidence. Learn how to use Elcomsoft Phone Breaker to quickly extract the complete conversation histories along with attachments and metadata from the user’s Microsoft Account.

What’s It All About?

With over 1.55 billion accounts and more than 420 million daily users, Skype is one of the world’s biggest instant messaging apps. While there is no lack of competition in the highly crowded market of instant messaging apps, Skype maintains its user base. This feature-rich app is available for all relevant platforms, and is actively developed and frequently updated by Microsoft. Skype is secure (enough) while maintaining transparency to the law enforcement, which makes Skype the only allowed VoIP communication app in countries such as the UAE. The free Skype-to-phone calls included with all Microsoft Office 365 subscriptions help Skype gain popularity among corporate and small office users, while integration with Alexa and Cortana voice assistants makes Skype the tool of choice for voice calls.


Why wasting time recovering passwords instead of just breaking in? Why can we crack some passwords but still have to recover the others? Not all types of protection are equal. There are multiple types of password protection, all having their legitimate use cases. In this article, we’ll explain the differences between the many types of password protection.

The password locks access

In this scenario, the password is the lock. The actual data is either not encrypted at all or is encrypted with some other credentials that do not depend on the password.

  • Data: Unencrypted
  • Password: Unknown
  • Data access: Instant, password can be bypassed, removed or reset

A good example of such protection would be older Android smartphones using the legacy Full Disk Encryption without Secure Startup. For such devices, the device passcode merely locks access to the user interface; by the time the system asks for the password, the data is already decrypted using hardware credentials and the password (please don’t laugh) ‘default_password’. All passwords protecting certain features of a document without encrypting its content (such as the “password to edit” when you can already view, or “password to copy”, or “password to print”) also belong to this category.

A good counter-example would be modern Android smartphones using File-Based Encryption, or all Apple iOS devices. For these devices, the passcode (user input) is an important part of data protection. The actual data encryption key is not stored anywhere on the device. Instead, the key is generated when the user first enters their passcode after the device starts up or reboots.

Users can lock access to certain features in PDF files and Microsoft Office documents, disabling the ability to print or edit the whole document or some parts of the document. Such passwords can be removed easily with Advanced Office Password Recovery (Microsoft Office documents) or Advanced PDF Password Recovery (PDF files).


Home users and small offices are served by two major manufacturers of network attached storage devices (NAS): QNAP and Synology, with Western Digital being a distant third. All Qnap and Synology network attached storage models are advertised with support for hardware-accelerated AES encryption. Encrypted NAS devices can be a real roadblock on the way of forensic investigations. In this article, we’ll review the common encryption scenarios used in home and small office models of network attached storage devices made by Synology. (more…)

Just like the previous generation of OLED-equipped iPhones, the iPhone 11 Pro and Pro Max both employ OLED panels that are prone to flickering that is particularly visible to those with sensitive eyes. The flickering is caused by PWM (Pulse Width Modulation), a technology used by OLED manufacturers to control display brightness. While both panels feature higher peak brightness compared to the OLED panel Apple used in the previous generations of iPhones, they are still prone to the same flickering at brightness levels lower than 50%. The screen flickering is particularly visible in low ambient brightness conditions, and may cause eyestrain with sensitive users.

Google has equipped its new-generation Pixel 4 and Pixel 4 XL devices with innovative OLED panels offering smooth 90 Hz refresh rates. While these OLED panels look great on paper, they have two major issues. First, the 90 Hz refresh rate is only enabled by Google at brightness levels of 75% or higher. Second, the displays flicker at brightness levels below 75%.

In this article, we’ll describe methods to get rid of OLED flickering on the last generations of Apple and Google smartphones without rooting or jailbreaking. (more…)

The first Microsoft Office product was announced back in 1988. During the past thirty years, Microsoft Office has evolved from a simple text editor to a powerful combination of desktop apps and cloud services. With more than 1.2 billion users of the desktop Office suite and over 60 million users of Office 365 cloud service, Microsoft Office files are undoubtedly the most popular tools on the market. With its backward file format compatibility, Microsoft Office has become a de-facto standard for documents interchange.

Since Word 2.0 released in 1991, Microsoft has been using encryption to help users protect their content. While certain types of passwords (even in the latest versions of Office) can be broken in an instant, some passwords can be extremely tough to crack. In this article we’ll explain the differences between the many types of protection one can use in the different versions of Microsoft Office tools, and explore what it takes to break such protection.


The release of macOS Catalina brought the usual bunch of security updates. One of those new security features directly affects how you install Elcomsoft iOS Forensic Toolkit on Macs running the new OS. In this guide we’ll provide step by step instructions on installing and running iOS Forensic Toolkit on computers running macOS 10.15 Catalina. Note: on macOS Catalina, you must use iOS Forensic Toolkit 5.11 or newer (older versions may also work but not recommended).

The Issue

In macOS 10.15, Apple made running third-party apps slightly more difficult. The new security measure is designed to prevent users from accidentally running apps downloaded from the Internet by quarantining files obtained from sources that aren’t explicitly whitelisted by Apple.

As Elcomsoft iOS Forensic Toolkit is not distributed through Apple App Store, our tool falls under this restriction and will be quarantined once you install it.


The Screen Time passcode is an optional feature of iOS 12 and 13 that can be used to secure the Content & Privacy Restrictions. Once the password is set, iOS will prompt for the Screen Time passcode if an expert attempts to reset the device backup password (iTunes backup password) in addition to the screen lock passcode. As a result, experts will require two passcodes in order to reset the backup password: the device screen lock passcode and the Screen Time passcode. Since the 4-digit Screen Time passcode is separate to the device lock passcode (the one that is used when locking and unlocking the device), it becomes an extra security layer effectively blocking logical acquisition attempts.

Since users don’t have to enter Screen Time passcodes as often as they are required to enter their screen lock passcode, it is easy to genuinely forget that password. Apple does not offer an official routine for resetting or recovering Screen Time passcodes other than resetting the device to factory settings and setting it up as a new device (as opposed to restoring it from the backup). For this reason, the official route is inacceptable during the course of device acquisition.

Unofficially, users can recover their Screen Time passcode by making a fresh local backup of the device and inspecting its content with a third-party tool. In iOS 12, the Screen Time passcode can be only recovered from password-protected backups; in iOS 13, the passcode cannot be obtained even from the local backup. If local backups are protected with a password not known to the expert, the situation becomes a deadlock: one cannot reset an unknown backup password without a Screen Time passcode, and one cannot access the Screen Time passcode without decrypting the backup.

Elcomsoft Phone Breaker 9.20 offers an effective solution to the deadlock by obtaining Screen Time passcodes from the user’s iCloud account. The tool supports all versions of iOS 12 and 13.


The iOS 12.4 jailbreak is out, and so is Elcomsoft iOS Forensic Toolkit. Using the two together, one can image the file system and decrypt the keychain of iPhone and iPad devices running most versions of iOS (except iOS 12.3 and and the latest 12.4.1, but 12.4 is still signed right now).

There is more to this jailbreak situation than meets the eye. There is not one but two different jailbreaks: unc0ver and Chimera. Both jailbreak tools come in several versions; the differences between their versions are severe. There is also a tool that can access the file system (but not the keychain) on some iOS devices without a jailbreak. Finally, we’ve been able to jailbreak the Apple TV running affected versions of tvOS.

In this article I’ll explain the differences between the two jailbreaks and their versions, provide information about the tool one can use to access the file system without jailbreaking, and provide instructions on how to safely jailbreak in offline mode.