Archive for the ‘Software’ category

For us, this year has been extremely replete with all sorts of developments in desktop, mobile and cloud forensics. We are proud with our achievements and want to share with you. Let’s have a quick look at what we’ve achieved in the year 2019.

Mobile Forensics: iOS File System Imaging

We started this year by updating Elcomsoft iOS Forensic Toolkit, and by a twist of a fate it became our most developed tool in 2019. The developments went through a number of iterations. The release of unc0ver and Electra jailbreaks enabled Elcomsoft iOS Forensic Toolkit to support physical acquisition for iOS 11.4 and 11.4.1 devices, allowing it to produce file system extraction via jailbreak.

In the meanwhile, we updated Elcomsoft Phone Viewer with support for file system images produced by GrayKey, a popular forensic solution for iOS physical extraction. Analysing GrayKey output with Elcomsoft Phone Viewer became faster and more convenient.

Later in February, Elcomsoft iOS Forensic Toolkit received a major update, adding support for physical acquisition of Apple devices running iOS 12. The tool became capable of extracting the content of the file system and decrypting passwords and authentication credentials stored in the iOS keychain. For the first time, iOS Forensic Toolkit made use of a rootless jailbreak with significantly smaller footprint compared to traditional jailbreaks.

Not long ago, Elcomsoft iOS Forensic Toolkit 5.20 was updated with file system extraction support for select Apple devices running all versions of iOS from iOS 12 to iOS 13.3. Making use of the new future-proof bootrom exploit built into the checkra1n jailbreak, EIFT is able to extract the full file system image, decrypt passwords and authentication credentials stored in the iOS keychain. And finally, the sensational version 5.21 raised a storm of headlines talking about iOS Forensic Toolkit as the ‘New Apple iOS 13.3 Security Threat’. Why? We made the tool support the extraction of iOS keychain from locked and disabled devices in the BPU-mode (Before-first-unlock). The extraction is available on Apple devices built with A7 through A11 generation SoC via the checkra1n jailbreak.

Mobile Forensics: Logical Acquisition

Later on, Elcomsoft Phone Viewer was further updated to recover and display Restrictions and Screen Time passwords when analysing iOS local backups. In addition, version 4.60 became capable of decrypting and displaying conversation histories in Signal, one of the world’s most secure messaging apps. Experts became able to decrypt and analyse Signal communication histories when analysing the results of iOS file system acquisition.

Desktop Forensics and Trainings

In 2019 we’ve also updated Advanced PDF Password Recovery with a new Device Manager, and added support for NVIDIA CUDA 10 and OpenCL graphic cards to Advanced Office Password Recovery. Advanced Intuit Password Recovery added support for Quicken and QuickBooks 2018-2019 covering the changes in data formats and encryption of newest Intuit applications. In addition, the tool enabled GPU acceleration on the latest generation of NVIDIA boards via CUDA 10.

We are proud to say that the many changes we implemented in Elcomsoft Distributed Password Recovery are based on the users’ feedback we received by email and in person, during and after the training sessions. We had several trainings this year in the UK, Northern Ireland and Canada. “Fantastic. Time well spent on the training and on software that will be very useful on cases in the future”, commented Computer Forensic Examiner.

Cloud Forensics

We learned how to extract and decrypt Apple Health data from the cloud – something that Apple won’t provide to the law enforcement when serving legal requests. Health data can serve as essential evidence during investigations. The updated Elcomsoft Phone Viewer can show Apple Health data extracted with Elcomsoft Phone Breaker or available in iOS local backups and file system images.

Very soon Elcomsoft Phone Breaker 9.20 expanded the list of supported data categories, adding iOS Screen Time and Voice Memos. Screen Time passwords and some additional information can be extracted from iCloud along with other synchronized data, while Voice Memos can be extracted from local and cloud backups and iCloud synchronized data.

Skype anyone? In December, Elcomsoft Phone Viewer and Elcomsoft Phone Breaker were updated to extract and display Skype conversation histories.

Desktop Forensics: Disk Encryption

Elcomsoft System Recovery received a major update with enhanced full-disk encryption support. The update made it easy to process full-disk encryption by simply booting from a flash drive. The tool automatically detects full-disk encryption, extracting and saving information required to brute-force passwords to encrypted volumes. In addition, the tool became capable of saving the system’s hibernation file to the flash drive for subsequent extraction of decryption keys for accessing encrypted volumes.

Cloud Forensics: iOS 13 & Authentication Tokens

Elcomsoft Phone Breaker 9.15 added the ability to download iCloud backups created with iPhone and iPad devices running iOS 13 and iPadOS. In addition, the tool became able to extract fully-featured iCloud authentication tokens from macOS computers.

Following this, Elcomsoft Phone Breaker 9.30 delivered a new iCloud downloading engine and low-level access to iCloud Drive data. Thanks to the new iCloud engine, the tool became capable of downloading backups produced by devices running all versions of iOS up to iOS 13.2. While advanced iCloud Drive structure analysis allows users to enable deep, low-level analysis of iCloud Drive secure containers.

Cloud Forensics: Google

Elcomsoft Cloud Explorer 2.20 boosted the number of data types available for acquisition, allowing experts to additionally download a bunch of new types of data. This includes data sources in the Visited tree, Web pages opened on Android devices, requests to Google Assistant in Voice search, Google Lens in Search history, Google Play Books and Google Play Movies & TV.

Challenges in Computer and Mobile Forensics: What to Expect in 2020

The past two years introduced a number of challenges forensic experts have never faced before. In 2018, Apple made it more difficult for the police to safely transport a seized iPhone to the lab by locking the USB port with USB restricted mode, making data preservation a challenge. The release of the A12 platform, also in 2018, made it difficult to unlock iOS devices protected with an unknown password, while this year’s release of iOS 13 rendered unlock boxes useless on iPhones based on the two most recent platforms.

On desktop and especially laptop computers, the widespread use of SSD drives made it impossible to access deleted data due to trim and garbage collection mechanisms. The users’ vastly increased reliance on cloud services and mass migration off the forensically transparent SMS platform towards the use of end-to-end encrypted messaging apps made communications more difficult to intercept and analyze.

Sheer amounts of data are greater than ever, making users rely more on external (attached) storage compared to using internal hard drives. Many attached storage devices are using secure encryption, some of them without even prompting the user. Extracting data from such devices becomes a challenge, while analyzing the huge amounts of information now requires significantly more time and effort.

The number of online accounts used by an average consumer grows steadily year over year. While password reuse and the use of cloud services to store and synchronize passwords makes experts’ jobs easier, the spread of secure, encrypted password management services is turning into a new challenge.

Knowing everyday challenges in desktop and mobile forensics, we can now peek into the future. (more…)

Why wasting time recovering passwords instead of just breaking in? Why can we crack some passwords but still have to recover the others? Not all types of protection are equal. There are multiple types of password protection, all having their legitimate use cases. In this article, we’ll explain the differences between the many types of password protection.

The password locks access

In this scenario, the password is the lock. The actual data is either not encrypted at all or is encrypted with some other credentials that do not depend on the password.

  • Data: Unencrypted
  • Password: Unknown
  • Data access: Instant, password can be bypassed, removed or reset

A good example of such protection would be older Android smartphones using the legacy Full Disk Encryption without Secure Startup. For such devices, the device passcode merely locks access to the user interface; by the time the system asks for the password, the data is already decrypted using hardware credentials and the password (please don’t laugh) ‘default_password’. All passwords protecting certain features of a document without encrypting its content (such as the “password to edit” when you can already view, or “password to copy”, or “password to print”) also belong to this category.

A good counter-example would be modern Android smartphones using File-Based Encryption, or all Apple iOS devices. For these devices, the passcode (user input) is an important part of data protection. The actual data encryption key is not stored anywhere on the device. Instead, the key is generated when the user first enters their passcode after the device starts up or reboots.

Users can lock access to certain features in PDF files and Microsoft Office documents, disabling the ability to print or edit the whole document or some parts of the document. Such passwords can be removed easily with Advanced Office Password Recovery (Microsoft Office documents) or Advanced PDF Password Recovery (PDF files).

(more…)

The first Microsoft Office product was announced back in 1988. During the past thirty years, Microsoft Office has evolved from a simple text editor to a powerful combination of desktop apps and cloud services. With more than 1.2 billion users of the desktop Office suite and over 60 million users of Office 365 cloud service, Microsoft Office files are undoubtedly the most popular tools on the market. With its backward file format compatibility, Microsoft Office has become a de-facto standard for documents interchange.

Since Word 2.0 released in 1991, Microsoft has been using encryption to help users protect their content. While certain types of passwords (even in the latest versions of Office) can be broken in an instant, some passwords can be extremely tough to crack. In this article we’ll explain the differences between the many types of protection one can use in the different versions of Microsoft Office tools, and explore what it takes to break such protection.

(more…)

Full-disk encryption presents an immediate challenge to forensic experts. When acquiring computers with encrypted system volumes, the investigation cannot go forward without breaking the encryption first. Traditionally, experts would remove the hard drive(s), make disk images and work from there. We are offering a faster and easier way to access information required to break full-disk system encryption by booting from a flash drive and obtaining encryption metadata required to brute-force the original plain-text passwords to encrypted volumes. For non-system volumes, experts can quickly pull the system’s hibernation file to extract on-the-fly encryption keys later on with Elcomsoft Forensic Disk Decryptor.

What’s It All About?

It’s about an alternative forensic workflow for accessing evidence stored on computers protected with full-disk encryption. Once the system partition is encrypted, there is nothing one can do about it but break the encryption. Elcomsoft System Recovery helps launch password recovery attacks sooner compared to the traditional acquisition workflow, and offers a chance of mounting the encrypted volumes in a matter of minutes by extracting the system’s hibernation file that may contain on-the-fly encryption keys protecting the encrypted volumes.

This new workflow is especially handy when analyzing ultrabooks, laptops and 2-in-1 Windows tablet devices such as the Microsoft Surface range featuring non-removable, soldered storage or non-standard media. With just a few clicks (literally), experts can extract all information required to launch the attack on encrypted volumes.

Elcomsoft System Recovery offers unprecedented safety and compatibility. The use of a licensed Windows PE environment ensures full hardware compatibility and boot support for systems protected with Secure Startup. The tool mounts the user’s disks and storage media in strict read-only mode to ensure forensically sound extraction. (more…)

iOS 12 Rootless Jailbreak

February 22nd, 2019 by Oleg Afonin

The new generation of jailbreaks has arrived. Available for iOS 11 and iOS 12 (up to and including iOS 12.1.2), rootless jailbreaks offer significantly more forensically sound extraction compared to traditional jailbreaks. Learn how rootless jailbreaks are different to classic jailbreaks, why they are better for forensic extractions and what traces they leave behind.

Privilege Escalation

If you are follow our blog, you might have already seen articles on iOS jailbreaking. In case you didn’t, here are a few recent ones to get you started:

In addition, we published an article on technical and legal implications of iOS file system acquisition that’s totally worth reading.

Starting with the iPhone 5s, Apple’s first iOS device featuring a 64-bit SoC and Secure Enclave to protect device data, the term “physical acquisition” has changed its meaning. In earlier (32-bit) devices, physical acquisition used to mean creating a bit-precise image of the user’s encrypted data partition. By extracting the encryption key, the tool performing physical acquisition was able to decrypt the content of the data partition.

Secure Enclave locked us out. For 64-bit iOS devices, physical acquisition means file system imaging, a higher-level process compared to acquiring the data partition. In addition, iOS keychain can be obtained and extracted during the acquisition process.

Low-level access to the file system requires elevated privileges. Depending on which tool or service you use, privilege escalation can be performed by directly exploiting a vulnerability in iOS to bypass system’s security measures. This is what tools such as GrayKey and services such as Cellebrite do. If you go this route, you have no control over which exploit is used. You won’t know exactly which data is being altered on the device during the extraction, and what kind of traces are left behind post extraction.

In iOS Forensic Toolkit, we rely on public jailbreaks to circumvent iOS security measures. The use of public jailbreaks as opposed to closed-source exploits has its benefits and drawbacks. The obvious benefit is the lower cost of the entire solution and the fact you can choose the jailbreak to use. On the other hand, classic jailbreaks were leaving far too many traces, making them a bit overkill for the purpose of file system imaging. A classic jailbreak has to disable signature checks to allow running unsigned code. A classic jailbreak would include Cydia, a third-party app store that requires additional layers of development to work on jailbroken devices. In other words, classic jailbreaks such as Electra, Meridian or unc0ver carry too many extras that aren’t needed or wanted in the forensic world. (more…)

The new generation of jailbreaks has arrived for iPhones and iPads running iOS 12. Rootless jailbreaks offer experts the same low-level access to the file system as classic jailbreaks – but without their drawbacks. We’ve been closely watching the development of rootless jailbreaks, and developed full physical acquisition support (including keychain decryption) for Apple devices running iOS 12.0 through 12.1.2. Learn how to install a rootless jailbreak and how to perform physical extraction with Elcomsoft iOS Forensic Toolkit.

Jailbreaking and File System Extraction

We’ve published numerous articles on iOS jailbreaks and their connection to physical acquisition. Elcomsoft iOS Forensic Toolkit relies on public jailbreaks to gain access to the device’s file system, circumvent iOS security measures and access device secrets allowing us to decrypt the entire content of the keychain including keychain items protected with the highest protection class.

(more…)

The two recent jailbreaks, unc0ver and Electra, have finally enabled file system extraction for Apple devices running iOS 11.4 and 11.4.1. At this time, all versions of iOS 11 can be jailbroken regardless of hardware. Let’s talk about forensic consequences of today’s release: keychain and file system extraction.

(more…)

Since April 2018, Apple made iTunes available to Windows 10 users through the Microsoft Store. While the stand-alone download remains available from Apple’s Web site, it is no longer offered by default to Windows 10 users. Instead, visitors are directed to Microsoft Store, which will handle the installation and updates of the iTunes app.

(more…)

Many thanks to Roman Morozov, ACELab technical support specialist, for sharing his extensive knowledge and expertise and for all the time he spent ditching bugs in this article.

In our previous article Life after Trim: Using Factory Access Mode for Imaging SSD Drives we only mentioned reliability of SSD drives briefly. As you may know, NAND flash memory can sustain a limited number of write operations. Manufacturers of today’s consumer SSD drives usually guarantee about 150 to 1200 write cycles before the warranty runs out. This can lead to the conclusion that a NAND flash cell can sustain up to 1200 write cycles, and that an SSD drive can actually survive more than a thousand complete rewrites regardless of other conditions. This, however, is not fully correct. Certain usage conditions and certain types of load can wear SSD drives significantly faster compared to their declared endurance. In this article, we’ll look why a perfectly healthy SSD drive with 98-99% remaining life can die a sudden death. We’ll also give recommendations on tools and approaches that can get the data back even if the SSD drive is corrupted or does not appear in the system. (more…)