Home users and small offices are served by two major manufacturers of network attached storage devices (NAS): QNAP and Synology, with Western Digital being a distant third. All Qnap and Synology network attached storage models are advertised with support for hardware-accelerated AES encryption. Encrypted NAS devices can be a real roadblock on the way of forensic investigations. In this article, we’ll review the common encryption scenarios used in home and small office models of network attached storage devices made by Synology. (more…)
Passwords are probably the oldest authentication method. Despite their age, passwords remain the most popular authentication method in today’s digital age. Compared to other authentication mechanisms, they have many tangible benefits. They can be as complex or as easy to remember as needed; they can be easy to use and secure at the same time (if used properly).
What can and what cannot be done with an iOS device using Touch ID/Face ID authentication as opposed to knowing the passcode? The differences are huge. For the sake of simplicity, we’ll only cover iOS 12 and 13. If you just want a quick summary, scroll down to the end of the article for a table.
When it comes to mobile forensics, experts are analyzing the smartphone itself with possible access to cloud data. However, extending the search to the user’s desktop and laptop computers may (and possibly will) help accessing information stored both in the physical smartphone and in the cloud. In this article we’ll list all relevant artefacts that can shed light to smartphone data. The information applies to Apple iOS devices as well as smartphones running Google Android.
Jailbreaking is used by the forensic community to access the file system of iOS devices, perform physical extraction and decrypt device secrets. Jailbreaking the device is one of the most straightforward ways to gain low-level access to many types of evidence not available with any other extraction methods.
In Apple’s land, losing your Apple Account password is not a big deal. If you’d lost your password, there could be a number of options to reinstate access to your account. If your account is not using Two-Factor Authentication, you could answer security questions to quickly reset your password, or use iForgot to reinstate access to your account. If you switched on Two-Factor Authentication to protect your Apple Account, you (or anyone else who knows your device passcode and has physical access to one of your Apple devices) can easily change the password; literally in a matter of seconds.
Full-disk encryption presents an immediate challenge to forensic experts. When acquiring computers with encrypted system volumes, the investigation cannot go forward without breaking the encryption first. Traditionally, experts would remove the hard drive(s), make disk images and work from there. We are offering a faster and easier way to access information required to break full-disk system encryption by booting from a flash drive and obtaining encryption metadata required to brute-force the original plain-text passwords to encrypted volumes. For non-system volumes, experts can quickly pull the system’s hibernation file to extract on-the-fly encryption keys later on with Elcomsoft Forensic Disk Decryptor.
The new generation of jailbreaks has arrived. Available for iOS 11 and iOS 12 (up to and including iOS 12.1.2), rootless jailbreaks offer significantly more forensically sound extraction compared to traditional jailbreaks. Learn how rootless jailbreaks are different to classic jailbreaks, why they are better for forensic extractions and what traces they leave behind.
The two recent jailbreaks, unc0ver and Electra, have finally enabled file system extraction for Apple devices running iOS 11.4 and 11.4.1. At this time, all versions of iOS 11 can be jailbroken regardless of hardware. Let’s talk about forensic consequences of today’s release: keychain and file system extraction.
Today’s smartphones and wearable devices collect overwhelming amounts of data about the user’s health. Health information including the user’s daily activities, workouts, medical conditions, body measurements and many other types of information is undoubtedly one of the most sensitive types of data. Yet, smartphone users are lenient to trust this highly sensitive information to other parties. In this research, we’ll figure out how Apple and Google as two major mobile OS manufacturers collect, store, process and secure health data. We’ll analyze Apple Health and Google Fit, research what information they store in the cloud, learn how to extract the data. We’ll also analyze how both companies secure health information and how much of that data is available to third parties.