Search results by keyword ‘c’

If you are a Windows user and ever considered protecting your data with full-disk encryption, you have probably heard about BitLocker. BitLocker is Microsoft’s implementation of full-disk encryption that is built into many versions of Windows. You maybe even using BitLocker without realizing that you do – for example, if you have a Surface or a similar thin-and-light Windows device. At the same time, BitLocker encryption is not available by default on desktops if you are using the Home edition of Windows 10. Activating BitLocker on your system disk can be tricky and may not work right away even if your Windows edition supports it. In this article, we are offering an introduction to BitLocker encryption. We’ll detail the types of threats BitLocker can effectively protect your data against, and the type of threats against which BitLocker is useless. Finally, we’ll describe how to activate BitLocker on systems that don’t meet Microsoft’s hardware requirements, and evaluate whether it’s worth it or not security-wise.

Today’s smartphones collect overwhelming amounts of data about the user’s daily activities. Smartphones track users’ location and record the number of steps they walked, save pictures and videos they take and every message they send or receive. Users trust smartphones with their passwords and login credentials to social networks, e-commerce and other Web sites. It is hard to imagine one’s daily life without calendars and reminders, notes and browser favorites and many other bits and pieces of information we entrust our smartphones. All of those bits and pieces, and much more, are collected from the iPhone and stored in the cloud. While Apple claims secure encryption for all of the cloud data, the company readily provides some information to the law enforcement when presented with a legal request – but refuses to give away some of the most important bits of data. In this article we’ll cover the types of data that Apple does and does not deliver when served with a government request or while processing the user’s privacy request.

What is DFU, and how is it different from the recovery mode? How do you switch the device to recovery, DFU or SOS mode, what can you do while in these modes and what do they mean in the context of digital forensics? Can you use DFU to jailbreak the device and perform the extraction if you don’t know the passcode? Read along to find out.

TerraMaster is a relatively new company specializing in network attached storage and direct attached storage solutions. The majority of TerraMaster NAS solutions are ARM64 and Intel-based boxes aimed at the home and SOHO users. TerraMaster’s OS (TOS) is based on Linux. At this time, TOS 4.1 is the current version of the OS.

Thecus has been manufacturing NAS devices for more than 15 years. The company develops an in-house Linux-based NAS OS, the ThecusOS. At this time, the most current version of the OS is ThecusOS 7. Thecus advertises secure data encryption in most of its NAS devices. The company’s volume-based encryption tool allows users to fully encrypt their entire RAID volume, defending essential data in instances of theft of the physical device. We found Thecus’ implementation of encryption somewhat unique. In this research, we’ll verify the manufacturer’s claims and check just how secure is Thecus’ implementation of 256-bit AES encryption.

For us, this year has been extremely replete with all sorts of developments in desktop, mobile and cloud forensics. We are proud with our achievements and want to share with you. Let’s have a quick look at what we’ve achieved in the year 2019.

We have recently updated Elcomsoft iOS Forensic Toolkit, adding the ability to acquire the file system from a wide range of iOS devices. The supported devices include models ranging from the iPhone 5s through the iPhone X regardless of the iOS version; more on that in iOS Device Acquisition with checkra1n Jailbreak. In today’s update (for both Windows and macOS platforms as usual), we’ve added the ability to extract select keychain records in the BFU (Before First Unlock) mode. We have a few other changes and some tips on extracting locked and disabled devices.

The past two years introduced a number of challenges forensic experts have never faced before. In 2018, Apple made it more difficult for the police to safely transport a seized iPhone to the lab by locking the USB port with USB restricted mode, making data preservation a challenge. The release of the A12 platform, also in 2018, made it difficult to unlock iOS devices protected with an unknown password, while this year’s release of iOS 13 rendered unlock boxes useless on iPhones based on the two most recent platforms.

Skype synchronizes chats, text messages and files sent and received with the Microsoft Account backend. Accessing Skype conversation histories by performing a forensic analysis of the user’s Microsoft Account is often the fastest and easiest way to obtain valuable evidence. Learn how to use Elcomsoft Phone Breaker to quickly extract the complete conversation histories along with attachments and metadata from the user’s Microsoft Account.

We’ve just announced a major update to iOS Forensic Toolkit, now supporting the full range of devices that can be exploited with the unpatchable checkra1n jailbreak.  Why is the checkra1n jailbreak so important for the forensic community, and what new opportunities in acquiring Apple devices does it present to forensic experts? We’ll find out what types of data are available on both AFU (after first unlock) and BFU (before first unlock) devices, discuss the possibilities of acquiring locked iPhones, and provide instructions on installing the checkra1n jailbreak. (more…)