Archive for the ‘Did you know that…?’ category

The Screen Time passcode (known as the Restrictions passcode in previous versions of iOS) is a separate 4-digit passcode designed to secure changes to the device settings and the user’s Apple ID account and to enforce the Content & Privacy Restrictions. You can add the Screen Time passcode when activating Screen Time on a child’s device or if you want to add an extra layer of security to your own device.

The 4-digit Screen Time passcode is separate to the main screen lock passcode you are using to unlock your device. If you configure Screen Time restrictions to your usage scenarios, you’ll hardly ever need to type the Screen Time password on your device.

Using the Screen Time password can be a great idea if you want to ensure that no one can reset your iTunes backup password, disable Find My iPhone or change your Apple ID password even if they steal your device *and* know your device passcode. On a flip side, there is no official way to recover the Screen Time password if you ever forget it other than resetting the device and setting it up from scratch. Compared to the device screen lock passcode, Screen Time passwords are much easier to forget since you rarely need it.

In this article, we’ll show you how to reveal your iOS 12 Screen Time passcode (or the Restrictions passcode if you’re using iOS 7 through 11) using Elcomsoft Phone Viewer. (more…)

By this time, seemingly everyone has published an article or two about Apple re-introducing the vulnerability that was patched in the previous version of iOS. The vulnerability was made into a known exploit, which in turn was used to jailbreak iOS 12.2 (and most previous versions). We’ll look at it from the point of view of a forensic expert.

(more…)

When it comes to mobile forensics, experts are analyzing the smartphone itself with possible access to cloud data. However, extending the search to the user’s desktop and laptop computers may (and possibly will) help accessing information stored both in the physical smartphone and in the cloud. In this article we’ll list all relevant artefacts that can shed light to smartphone data. The information applies to Apple iOS devices as well as smartphones running Google Android.

Mobile Artefacts on Desktops and Laptops

Due to the sheer capacity, computer storage may contain significantly more evidence than a smartphone. However, that would be a different kind of evidence compared to timestamped and geotagged usage data we’ve come to expect from modern smartphones.

How can the user’s PC or Mac help mobile forensic experts? There several types of evidence that can help us retrieve data from the phone or the cloud.

  1. iTunes backups. While this type of evidence is iPhone-specific (or, rather, Apple-specific), a local backup discovered on the user’s computer can become an invaluable source of evidence.
  2. Saved passwords. By instantly extracting passwords stored in the user’s Web browser (Chrome, Edge, IE or Safari), one can build a custom dictionary for breaking encryption. More importantly, one can use stored credentials for signing in to the user’s iCloud or Google Account and performing a cloud extraction.
  3. Email account. An email account can be used to reset a password to the user’s Apple or Google account (with subsequent cloud extraction using the new credentials).
  4. Authentication tokens. These can be used to access synchronized data in the user’s iCloud account (tokens must be used on the user’s computer; on macOS, transferable unrestricted tokens may be extracted). There are also tokens for Google Drive (can be used to access files in the user’s Google Drive account) and Google Account (can be used to extract a lot of data from the user’s Google Account). The computer itself is also an artefact as certain authentication tokens are “pinned” to a particular piece of hardware and cannot be transferred to another device. If the computer is a “trusted” device, it can be used for bypassing two-factor authentication.

(more…)

In iOS forensics, cloud extraction is a viable alternative when physical acquisition is not possible. The upcoming release of iOS 13 brings additional security measures that will undoubtedly make physical access even more difficult. While the ability to download iCloud backups has been around for years, the need to supply the user’s login and password followed by two-factor authentication was always a roadblock.

Some five years ago, we learned how to use authentication tokens to access iCloud backups without a password. In Breaking Into iCloud: No Password Required we discussed the benefits of this approach. During the next years, we learned how to use authentication tokens to access other types of data stored in iCloud including the user’s photo library, browsing history, contacts, calendars and other information that Apple synchronizes across all of the user’s devices that are signed in to the same Apple account.

Many things have changed since then. Tokens can no longer be used to access iCloud backups, period. Tokens cannot be used to access passwords (iCloud Keychain), Screen Time, Health and Messages. Sometime last year Apple pinned authentication tokens to a particular computer, making them usable just from the very PC or Mac they’ve been created on. It took us more than a year to figure out a workaround allowing experts to transfer authentication tokens from the user’s computer. Even today, this workaround is only working if the user had a macOS computer. With this number of restrictions, are authentication tokens still usable? What can you obtain from the user’s iCloud account with an authentication token, and what can be accessed with a login and password? How two-factor authentication affects what’s available in an iCloud account, and why knowing the screen lock passcode (or Mac system password) can help? Keep reading to find out.

(more…)

The cloud becomes an ever more important (sometimes exclusive) source of the evidence whether you perform desktop or cloud forensics. Even if you are not in forensics, cloud access may help you access deleted or otherwise inaccessible data.

Similar to smartphones or password-protected desktops, cloud access is a privilege that is supposed to be only available to the rightful account owner. You would need a login and password and possibly the second factor. These aren’t always available to forensic experts. In fact, it won’t be easy to access everything stored in the cloud if you have all the right credentials.

Apple iCloud is one of the most advanced cloud solutions on the market, with lots of services available. These include comprehensive device backups, synchronization services across the entire Apple ecosystem including the Apple TV and Apple Watch devices, file storage, password management, home IoT devices, Health data and more. And it is pretty secure.

Let’s review all the possibilities of accessing Apple iCloud data with or without a password.

(more…)

iOS 13 is on the way. While the new mobile OS is still in beta, so far we have not discovered many revolutionary changes in the security department. At the same time, there are quite a few things forensic specialists will need to know about the new iteration of Apple’s mobile operating system. In this article, we’ll be discussing the changes and their meaning for the mobile forensics.

iCloud backups

We’ve seen several changes to iCloud backups that break third-party tools not designed with iOS 13 in mind. Rest assured we’ve updated our tools to support iOS 13 iCloud backups already. We don’t expect the backup format to change once iOS 13 is officially released, yet we keep an eye on them.

First, Apple has changed the protocol and encryption. There’s nothing major, but those changes were more than enough to effectively block all third-party tools without explicit support for iOS 13.

Second, cloud backups (at least in the current beta) now contain pretty much the same set of info as unencrypted local backups. Particularly missing from iCloud backups made with iOS 13 devices are call logs and Safari history. This information is now stored exclusively as “synchronized data”, which makes it even more important for the investigator to extract synced evidence in addition to backups. Interestingly, nothing was changed about synced data; you can still use the same tools and sign in with either Apple ID/password/2FA or authentication tokens. (more…)

We all know how much important data is stored in modern smartphones, making them an excellent source of evidence. However, data preservation and acquisition are not as easy as they sound. There is no silver bullet or “fire and forget” solutions to solve cases or extract evidence on your behalf. In this article, which is loosely based on our three-day training program, we will describe the proper steps in the proper order to retain and extract as much data from the iPhone as theoretically possible.

(more…)

Over the last several years, the use of smart wearables has increased significantly. With 141 million smartwatch units sold in 2018, the number of smart wearables sold has nearly doubled compared to the year before. Among the various competitors, the Apple Watch is dominating the field with more than 22.5 million of wearable devices sold in 2018. Year over year, the Apple Watch occupies nearly half of the global market.

During the years, starting from 2015, Apple manufactured five different models with WatchOS, a wearable OS based on iOS and specifically developed for the Apple Watch.

Some initial an innovative research of the device was done by Heather Mahalik and Sarah Edwards back in 2015 on the original Apple Watch. The presentation is available on Sarah Edwards’s GitHub account (PDF).

Since then, not a lot of research was done on how to extract data from this kind of devices. I have been working on this topic over the last months, by researching methods on how to extract and analyze data stored on the internal memory of the Apple Watch.

(more…)

While the iPhone is Apple’s bread and butter product, is not the only device produced by the company. We’ve got the Mac (in desktop and laptop variations), the complete range of tablets (the iPad line, which is arguably the best tablet range on the market), the music device (HomePod), the wearable (Apple Watch), and the Apple TV. In today’s article, we are going to cover data extraction from Apple TV and Apple Watch. They do contain tons of valuable data, and are often the only source of evidence.

(more…)

If you are familiar with breaking passwords, you already know that different tools and file formats require a very different amount of efforts to break. Breaking a password protecting a RAR archive can take ten times as long as breaking a password to a ZIP archive with the same content, while breaking a Word document saved in Office 2016 can take ten times as long as breaking an Office 2010 document. With solutions for over 300 file formats and encryption algorithms, we still find iTunes backups amazing, and their passwords to be very different from the rest of the crop in some interesting ways. In this article we tried to gather everything we know about iTunes backup passwords to help you break (or reset) their passwords in the most efficient way.

(more…)